Formulas¶
(doc)
conditions.dynamics.equilibrium
(doc) Total torque is zero
\[\tau = 0\]
(doc)
conditions.thermodynamics.dielectrics
(doc) Equation of state
\[D = f{\left(E,T,\rho \right)}\]
(doc)
definitions
(doc) Acceleration is speed derivative
\[a{\left(t \right)} = \frac{d}{d t} v{\left(t \right)}\](doc) Admittance is inverse impedance
\[Y = \frac{1}{Z}\](doc) Angular acceleration is angular speed derivative
\[\alpha{\left(t \right)} = \frac{d}{d t} \omega{\left(t \right)}\](doc) Angular speed is angular distance derivative
\[\omega{\left(t \right)} = \frac{d}{d t} \theta{\left(t \right)}\](doc) Angular wavenumber is inverse wavelength
\[k = \frac{2 \pi}{\lambda}\](doc) Boltzmann factor via state energy and temperature
\[f = \exp{\left(- \frac{E_{i}}{k_\text{B} T} \right)}\](doc) Compliance is inverse stiffness
\[c = \frac{1}{k}\](doc) Compressibility factor is deviation from ideal gas
\[Z = \frac{p V}{n R T}\](doc) Current is charge derivative
\[I{\left(t \right)} = \frac{d}{d t} q{\left(t \right)}\](doc) Damped harmonic oscillator equation
\[\frac{d^{2}}{d t^{2}} x{\left(t \right)} + 2 \zeta \omega \frac{d}{d t} x{\left(t \right)} + \omega^{2} x{\left(t \right)} = 0\](doc) Density from mass and volume
\[\rho = \frac{m}{V}\](doc) Electrical conductance is inverse resistance
\[G = \frac{1}{R}\](doc) Harmonic oscillator is a second order derivative equation
\[\frac{d^{2}}{d t^{2}} x{\left(t \right)} = - \omega^{2} x{\left(t \right)}\](doc) Heat capacity ratio
\[\gamma = \frac{C_{p}}{C_{V}}\](doc) Impedance is resistance and reactance
\[Z = R + i X\](doc) Impulse is integral of force over time
\[J = \int\limits_{t_{0}}^{t_{1}} F{\left(t \right)}\, dt\](doc) Intensity of sound wave is rate of energy transfer over area
\[I = \frac{P}{A}\](doc) Linear coefficient of thermal expansion
\[\alpha_{l} = \frac{\frac{\partial}{\partial T} l{\left(T,p \right)}}{l{\left(T,p \right)}}\](doc) Lorentz factor
\[\gamma = \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}\](doc) Mass flow rate
\[\mu{\left(t \right)} = \frac{d}{d t} m{\left(t \right)}\](doc) Mass fraction of mixture component
\[w_{i} = \frac{m_{i}}{m}\](doc) Mechanical energy is kinetic and potential energy
\[E = K + U\](doc) Momentum is mass times speed
\[p = m v\](doc) Net force is sum of individual forces
\[F = \sum_i {F}_{i}\](doc) Number density is number of objects per unit volume
\[n = \frac{N}{V}\](doc) Period from angular frequency
\[T = \frac{2 \pi}{\omega}\](doc) Power is energy derivative
\[P{\left(t \right)} = \frac{d}{d t} E{\left(t \right)}\](doc) Quality factor is ratio of energies
\[Q = \frac{\omega E}{P}\](doc) Radiant exitance is radiant flux emitted per unit area
\[M_\text{e} = \frac{d}{d A} \Phi_\text{e}{\left(A \right)}\](doc) Relative refractive index is ratio of wave speeds
\[n = \frac{v_\text{incident}}{v_\text{refracted}}\](doc) Rotational inertia is mass times squared radius
\[I = m r^{2}\](doc) Sound level in decibels
\[L_{I} = L_{I0} \log_{10} \left( \frac{I}{I_0} \right)\](doc) Speed is distance derivative
\[v{\left(t \right)} = \frac{d}{d t} s{\left(t \right)}\](doc) Temporal frequency from period
\[f = \frac{1}{T}\](doc) Temporal frequency is number of events per unit time
\[f = \frac{N}{t}\](doc) Thermal de Broglie wavelength
\[\lambda = \hbar \sqrt{\frac{2 \pi}{m k_\text{B} T}}\](doc) Thermal resistance to conduction
\[R_\text{val} = \frac{h}{k}\](doc) Thermodynamic compressibility
\[\beta = - \frac{\frac{\partial}{\partial p} V{\left(p,q \right)}}{V{\left(p,q \right)}}\](doc) Volumetric coefficient of thermal expansion
\[\alpha_{V} = \frac{\frac{\partial}{\partial T} V{\left(T,q \right)}}{V{\left(T,q \right)}}\](doc) Wave equation in one dimension
\[\frac{\partial^{2}}{\partial x^{2}} u{\left(x,t \right)} = \frac{\frac{\partial^{2}}{\partial t^{2}} u{\left(x,t \right)}}{v^{2}}\]
(doc)
definitions.vector
(doc) Acceleration is velocity derivative
\[{\vec a} \left( t \right) = \frac{d}{d t} {\vec v} \left( t \right)\](doc) Angular momentum is position cross linear momentum
\[{\vec L} = \left[ {\vec r}, {\vec p} \right]\](doc) Damping force is proportional to velocity
\[{\vec F} = - b {\vec v}\](doc) Momentum is mass times velocity (Vector)
\[{\vec p} = m {\vec v}\](doc) Net force vector is sum of forces
\[{\vec F} = \sum_i {{\vec F}}_{i}\](doc) Vector area is unit normal times scalar area
\[{\vec A} = {\vec n} A\](doc) Velocity is position vector derivative
\[{\vec v} \left( t \right) = \frac{d}{d t} {\vec d} \left( t \right)\]
(doc)
laws.astronomy
(doc) Absolute magnitude from apparent magnitude and distance
\[M = m - 5 \log_{10} \left( \frac{d}{d_0} \right)\](doc) Angular altitude in upper culmination
\[h = 90^\circ - \phi + \delta\](doc) Approximate lifetime of stars located on the main sequence
\[t = t_\odot \frac{m}{M_\odot} \frac{L_\odot}{L}\](doc) Change in apparent magnitude from distance
\[m_{2} - m_{1} = - 2.5 \log_{10} \left( \frac{E_{\text{e}2}}{E_{\text{e}1}} \right)\](doc) Latitude from zenith angle and declination
\[\phi = \frac{\theta_\text{S} - \theta_\text{N} + \delta_\text{S} + \delta_\text{N}}{2}\](doc) Lifetime of star on main sequence
\[t = 10 \, \text{Gyr} \left(\frac{m}{M_\odot}\right)^{1 - n}\](doc) Luminosity of star from absolute magnitude
\[\log_{10} \left( \frac{L}{L_0} \right) = - 0.4 M\](doc) Luminosity of Sun in future from luminosity in present
\[L_{1} = L \left(\frac{5.59}{\frac{t}{1 \, \text{Gyr}}} - 1.41 + 0.26 \frac{t}{1 \, \text{Gyr}}\right)\](doc) Luminosity of Sun in past from luminosity in present
\[L_{0} = \frac{L}{1 + 0.4 \left(1 - \frac{t}{1 \, \text{Gyr}} \frac{1}{4.6}\right)}\](doc) Radius of planetary orbits from number
\[r = a + b 2^{N}\](doc) Ratio of luminosities from ratio of masses of stars
\[\frac{L_{2}}{L_{1}} = \left(\frac{m_{2}}{m_{1}}\right)^{4}\](doc) Speed of galaxy from distance to galaxy
\[v = H d\]
(doc)
laws.astronomy.relativistic
(doc) Relative rocket speed from mass change and effective exhaust speed
\[\frac{m_{1}}{m_{0}} = \left(\frac{1 - \frac{v}{c}}{1 + \frac{v}{c}}\right)^{\frac{c}{2 v_\text{e}}}\]
(doc)
laws.chemistry
(doc) Avogadro constant is particle count over amount of substance
\[N_\text{A} = \frac{N}{n}\](doc) Boundary of thermalization zone of atomized atoms in magnetron
\[l = N \lambda\](doc) Distance of greatest convergence of particles in magnetron
\[d = - d_0 \left(Z_{1}^{0.0387} + Z_{2}^{0.0387}\right) \log \left( \frac{V}{V_0 \left(Z_{1} Z_{2}\right)^{1.4883}} \right)\](doc) Electron distribution function in gas plasma per Druyvestein
\[f = \frac{E_0 \sqrt{e V}}{E^{\frac{3}{2}}} \exp{\left(- \frac{0.55 \left(e V\right)^{2}}{E^{2}} \right)}\](doc) Electron distribution function in gas plasma per Maxwell
\[f = \frac{E_0 \sqrt{e V}}{E^{\frac{3}{2}}} \exp{\left(- \frac{1.55 e V}{E} \right)}\](doc) Electron current in probe circuit in gas plasma
\[I = 0.25 A e n \sqrt{\frac{8 k_\text{B} T}{\pi m_\text{e}}} \exp{\left(- \frac{e \left(U_\text{f} - U_{\vec E}\right)}{k_\text{B} T} \right)}\](doc) Energy transfer coefficient for elastic scattering in magnetron
\[x = \frac{2 m_{1} m_{2}}{\left(m_{1} + m_{2}\right)^{2}}\](doc) Etch rate of target in magnetron
\[v = \frac{j M Y}{e \rho N_\text{A}}\](doc) Interaction cross section in Coulomb’s interaction model
\[\sigma = \frac{e^{2}}{2 \pi \varepsilon_0^{2} E_\text{i}^{2}}\](doc) Interaction cross section in elastic interaction model
\[\sigma = \pi D^{2} \left(1 + \frac{S}{T}\right)\](doc) Interaction cross section in model of hard spheres
\[\sigma = \pi d^{2}\](doc) Interaction cross section in recharge model
\[\sigma = \pi a_0^{2} \frac{\mathrm{IE}_\text{H}}{E_\text{i}} \log \left( \sqrt{\frac{3 k_\text{B} T}{m}} \sqrt{\frac{E_\text{i}}{\mathrm{IE}_\text{H}}} \frac{\sigma p m}{2 k_\text{B} T e E} \right)^{2}\](doc) Ionization cross section of atom by electrons per Granovsky
\[\sigma_\text{eff} = \sigma_\text{max} \frac{E - \sigma_\text{i}}{E_\text{max} - \sigma_\text{i}} \exp{\left(\frac{E_\text{max} - E}{E_\text{max} - \sigma_\text{i}} \right)}\](doc) Ionization cross section of atom by electrons per Lotz-Drevin
\[\sigma = \frac{2.66 \pi a_0^{2} N \mathrm{IE}_\text{H}^{2}}{E_\text{i}^{2}} \frac{A \left(\frac{E}{E_\text{i}} - 1\right)}{\left(\frac{E}{E_\text{i}}\right)^{2}} \log \left( 1.25 B \frac{E}{E_\text{i}} \right)\](doc) Mass of film deposited during electrolysis
\[m = \frac{I M B t}{v \mathfrak{F}}\](doc) Mean free path of particles in gaseous medium
\[\lambda = \frac{k_\text{B} T}{\sqrt{2} p \sigma}\](doc) Molar mass via molecular mass
\[M = m_{0} N_\text{A}\](doc) Number density via volumetric density and molar mass
\[n = \frac{\rho N_\text{A}}{M}\](doc) Number of collisions of particle with gas in magnetron
\[N = \frac{\log \left( \frac{E}{E_{0}} \right)}{\log \left( 1 - x \right)}\](doc) Reaction equilibrium constant via standard Gibbs energy
\[K = \exp{\left(- \frac{\Delta G}{R T} \right)}\](doc) Speed of charged particles in gas via mobility
\[v = \frac{\mu E}{p}\](doc) Volumetric ionization coefficient of neutral particles by electrons
\[\alpha = A p \exp{\left(- \frac{B p}{E} \right)}\]
(doc)
laws.chemistry.electrochemistry
(doc)
laws.chemistry.potential_energy_models
(doc) Lennard-Jones potential
\[U = 4 \varepsilon \left(\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}\right)\]
(doc)
laws.condensed_matter
(doc) Concentration of intrinsic charge carriers
\[n = \sqrt{N_\text{c} N_\text{v}} \exp{\left(- \frac{E_\text{g}}{2 k_\text{B} T} \right)}\](doc) Current density from mobility
\[j = e \left(- n_\text{e} \mu_\text{e} + n_\text{h} \mu_\text{h}\right) E\](doc) Current density in thermionic emission per Richardson
\[j = a T^{2} \exp{\left(- \frac{W}{k_\text{B} T} \right)}\](doc) Current density via number density and drift velocity
\[j = q n u\](doc) Diffusion coefficient from energy and temperature
\[D = D_{0} \exp{\left(- \frac{E_\text{A}}{k_\text{B} T} \right)}\](doc) Drift velocity of charge carriers
\[u = \mu E\](doc) Effective mass of electron via energy
\[m_\text{eff} = \frac{\hbar^{2}}{\frac{d^{2}}{d k^{2}} E{\left(k \right)}}\](doc) Equilibrium voltage difference in p-n junction via concentrations
\[\Delta V = \frac{k_\text{B} T}{q} \log \left( \frac{n_\text{d} n_\text{a}}{n^{2}} \right)\](doc) Resistance from temperature
\[R = R_{0} \left(1 + a \left(T - T_\text{std}\right)\right)\]
(doc)
laws.conservation
(doc) Abbe invariant of two optical environments is constant
\[n_{0} \left(\frac{1}{d_\text{o}} - \frac{1}{r}\right) = n \left(\frac{1}{d_\text{i}} - \frac{1}{r}\right)\](doc) Amount of mixture is sum of amounts of components
\[n = \sum_i {n}_{i}\](doc) Charge is constant
\[\frac{d}{d t} q{\left(t \right)} = 0\](doc) Initial mass equals final mass
\[m{\left(t_{1} \right)} = m{\left(t_{0} \right)}\](doc) Initial mechanical energy equals final mechanical energy
\[E{\left(t_{1} \right)} = E{\left(t_{0} \right)}\](doc) Initial momentum equals final momentum
\[p{\left(t_{1} \right)} = p{\left(t_{0} \right)}\](doc) Mass is constant
\[\frac{d}{d t} m{\left(t \right)} = 0\](doc) Mechanical energy is constant
\[\frac{d}{d t} E{\left(t \right)} = 0\](doc) Mixture mass is sum of component masses
\[m = \sum_i {m}_{i}\](doc) Momentum is constant
\[\frac{d}{d t} p{\left(t \right)} = 0\]
(doc)
laws.dynamics
(doc) Acceleration is force over mass
\[a = \frac{F}{m}\](doc) Braking path via speed and friction force
\[s = \frac{m v^{2}}{2 F_\text{fr}}\](doc) Buoyant force from density and volume
\[F_\text{A} = \rho g V\](doc) Coefficient of stiffness from area and length
\[k = \frac{E A}{l}\](doc) Displacement in forced non-resonant oscillations
\[q{\left(t \right)} = \frac{\frac{F}{m} \cos{\left(\omega t + \varphi \right)}}{\omega_{0}^{2} - \omega^{2}}\](doc) Force is derivative of momentum
\[\frac{d}{d t} p{\left(t \right)} = F{\left(t \right)}\](doc) Forced oscillations equation
\[\frac{d^{2}}{d t^{2}} x{\left(t \right)} + \omega_{0}^{2} x{\left(t \right)} = \frac{F}{m} \cos{\left(\omega t + \varphi \right)}\](doc) Friction force from normal force
\[F_\text{fr} = \mu N\](doc) Instantaneous power is force times speed
\[P = F v \cos{\left(\varphi \right)}\](doc) Kinetic energy from mass and speed
\[K = \frac{m v^{2}}{2}\](doc) Kinetic energy from rotational inertia and angular speed
\[K = \frac{I \omega^{2}}{2}\](doc) Kinetic energy via momentum
\[K = \frac{p^{2}}{2 m}\](doc) Maximum height from initial speed
\[h = \frac{v^{2}}{2 g}\](doc) Mechanical work is force times distance
\[W = F s\](doc) Momentum derivative of kinetic energy is speed
\[\frac{d}{d p{\left(v \right)}} K{\left(p{\left(v \right)} \right)} = v\](doc) Period of ideal pendulum from length
\[T = 2 \pi \sqrt{\frac{l}{g}}\](doc) Period of physical pendulum
\[T = 2 \pi \sqrt{\frac{I}{m g d}}\](doc) Period of spring from mass
\[T = 2 \pi \sqrt{\frac{m}{k}}\](doc) Period of torsion pendulum from rotational inertia
\[T = 2 \pi \sqrt{\frac{I}{\kappa}}\](doc) Elastic potential energy from displacement
\[U = \frac{k d^{2}}{2}\](doc) Potential energy from mass and height
\[U = m g h\](doc) Pressure from force and area
\[p = \frac{F}{A}\](doc) Reaction force equals action force
\[F_{21} = - F_{12}\](doc) Reduced mass of a two-body system
\[\mu = \frac{1}{\frac{1}{m_{1}} + \frac{1}{m_{2}}}\](doc) Displacement in resonant oscillations
\[x{\left(t \right)} = \frac{F}{2 m \omega_{0}} t \sin{\left(\omega_{0} t + \varphi \right)}\](doc) Rocket thrust is rocket mass times acceleration
\[R v_\text{rel} = m a\](doc) Rotational work is torque times angular distance
\[W = \tau \theta\](doc) Rocket speed from mass and impulse
\[\Delta v = v_\text{e} \log \left( \frac{m_{0}}{m_{1}} \right)\](doc) Torque via force and radial distance
\[\tau = r F \sin{\left(\varphi \right)}\](doc) Torque via rotational inertia and angular acceleration
\[\tau = I \alpha\](doc) Total work is change in kinetic energy
\[W = K{\left(t_{1} \right)} - K{\left(t_{0} \right)}\](doc) Work is integral of force over distance
\[W = \int\limits_{x_{0}}^{x_{1}} F{\left(x \right)}\, dx\]
(doc)
laws.dynamics.damped_oscillations
(doc) Energy of underdamped oscillator
\[E = \frac{m \omega_{0}^{2} A^{2} \exp{\left(- 2 \lambda t \right)}}{2}\](doc) Quality factor via bandwidth
\[Q = \frac{f_\text{r}}{\Delta f}\](doc) Quality factor via damping ratio
\[Q = \frac{1}{2 \zeta}\](doc) Quality factor via energy loss
\[Q = \omega_\text{r} \frac{E_\text{stored}}{P_\text{loss}}\]
(doc)
laws.dynamics.deformation
(doc) Bulk modulus via Young modulus and Poisson ratio
\[K = \frac{E}{3 \left(1 - 2 \nu\right)}\](doc) Elastic energy density of bulk compression via pressure
\[w = \frac{p^{2}}{2 K}\](doc) Elastic energy density of compression via strain
\[w = \frac{E e^{2}}{2}\](doc) Engineering normal strain is total deformation over initial dimension
\[e = \frac{\Delta l}{l}\](doc) Poisson ratio is transverse to axial strain ratio
\[\nu = - \frac{e_\text{transverse}}{e_\text{axial}}\](doc) Rotational stiffness is torque applied over angle
\[\kappa = \frac{\tau}{\theta}\](doc) Shear stress is shear modulus times strain
\[\tau = G \gamma\](doc) Superposition of small deformations
\[e = e_{1} + e_{2}\](doc) Tensile stress is Young’s modulus times strain
\[\sigma = E e\]
(doc)
laws.dynamics.fields
(doc) Conservative force is gradient of potential energy
\[{\vec F} \left( {\vec r} \right) = - \text{grad} \, U{\left({\vec r} \right)}\]
(doc)
laws.dynamics.springs
(doc)
laws.dynamics.springs.vector
(doc) Spring reaction is proportional to deformation (vector)
\[{\vec F} = - k {\vec s}\]
(doc)
laws.dynamics.vector
(doc) Acceleration from force and mass (vector)
\[{\vec a} = \frac{{\vec F}}{m}\](doc) Force is derivative of momentum (vector)
\[{\vec F} \left( t \right) = \frac{d}{d t} {\vec p} \left( t \right)\](doc) Instantaneous power is dot product of force and velocity
\[P = \left( {\vec F}, {\vec v} \right)\](doc) Mechanical work from force and displacement
\[W = \left( {\vec F}, {\vec s} \right)\](doc) Mechanical work is line integral of force
\[W = \int_{C} \left( {\vec F} \left( {\vec r} \right), d \vec r \right)\](doc) Normal force via pressure and vector area
\[{\vec F}_{n} = p {\vec A}\](doc) Relative acceleration from force
\[{\vec a}_\text{rel} = \frac{{\vec F}}{m} + {\vec a}_\text{Cor} - {\vec a}_\text{tr}\](doc) Restoring torque due to twist of torsion pendulum
\[{\vec \tau} = - \kappa {\vec \theta}\](doc) Torque is angular momentum derivative
\[{\vec \tau} \left( t \right) = \frac{d}{d t} {\vec L} \left( t \right)\](doc) Torque of twisting force
\[{\vec \tau} = \left[ {\vec r}, {\vec F} \right]\]
(doc)
laws.electricity
(doc) Absolute permittivity via relative permittivity
\[\varepsilon = \varepsilon_0 \varepsilon_\text{r}\](doc) Admittance is conductance and susceptance
\[Y = G + i B\](doc) Capacitance from charge and voltage
\[C = \frac{q}{V}\](doc) Wave impedance from permeability and permittivity
\[\eta = Z_0 \sqrt{\frac{\mu_\text{r}}{\varepsilon_\text{r}}}\](doc) Charge is quantized
\[q = N e\](doc) Corona discharge current from voltage
\[I = A \mu V \left(V - V_{0}\right)\](doc) Current is voltage over impedance
\[I = \frac{V}{Z}\](doc) Current is voltage over resistance
\[I = \frac{V}{R}\](doc) Electric charge is constant in isolated system
\[q_{1} = q_{0}\](doc) Electric dipole moment is charge times distance
\[p = q d\](doc) Electric displacement is permittivity times electric field
\[D = \varepsilon E\](doc) Electric field due to dipole on the dipole axis
\[E = \frac{1}{2 \pi \varepsilon_0} \frac{p}{d^{3}}\](doc) Electric field due to point charge
\[E = \frac{1}{4 \pi \varepsilon_0} \frac{q}{d^{2}}\](doc) Electric field is force over test charge
\[E = \frac{F}{q_{0}}\](doc) Electric field of uniformly charged plane
\[E = \frac{\sigma}{2 \varepsilon_0}\](doc) Electric field outside charged sphere
\[E = \frac{q}{4 \pi \varepsilon_0 d^{2}}\](doc) Electric flux through closed surface in linear material
\[\Phi_{\vec E} = \frac{q_\text{free}}{\varepsilon}\](doc) Electric flux through closed surface via total charge
\[\Phi_{\vec E} = \frac{q}{\varepsilon_0}\](doc) Electric field in gas gap between two electrodes
\[E = \frac{3 \sqrt{\frac{x}{d}} \frac{V}{d}}{2}\](doc) Electromotive force induced in moving contour
\[\mathcal{E} = - N \frac{d}{d t} \Phi_{\vec B}{\left(t \right)}\](doc) Electromotive force induced in rotating rod
\[\mathcal{E} = \frac{B \omega l^{2}}{2}\](doc) Electromotive force induced in rotating coil
\[\mathcal{E} = - N B A \omega \sin{\left(\omega t \right)}\](doc) Electrostatic force via charges and distance
\[F = \frac{1}{4 \pi \varepsilon_0} \frac{q_{1} q_{2}}{d^{2}}\](doc) Electrostatic potential due to point charge
\[U_{\vec E} = \frac{q}{4 \pi \varepsilon d}\](doc) Electrostatic potential energy of two charges via distance
\[U_{\vec E} = \frac{q_{1} q_{2}}{4 \pi \varepsilon d}\](doc) Electrostatic potential is work to bring from reference point over charge
\[U_{\vec E} = \frac{W}{q}\](doc) Energy density via permittivity and electric field
\[w = \frac{\varepsilon E^{2}}{2}\](doc) Energy of magnetic field of coil
\[E = \frac{\mu_0 \mu_\text{r} H^{2} V}{2}\](doc) Energy via constant power and time
\[E = P t\](doc) Force between parallel wires
\[F = \frac{\mu I_{1} I_{2} l}{2 \pi d}\](doc) Inductance is magnetic flux over current
\[L = \frac{\Phi_{\vec B}}{I}\](doc) Inductance is proportional to turn count
\[L = \frac{\mu N^{2} A}{l}\](doc) Inductance via number of turns and coil volume
\[L = \mu n^{2} V\](doc) Instantaneous energy of magnetic field
\[E = \frac{L I_\text{max}^{2}}{2} \cos^{2}{\left(\omega t + \varphi \right)}\](doc) Magnetic field due to current loop along axis
\[B = \frac{\mu_0 I r^{2}}{2 \left(d^{2} + r^{2}\right)^{\frac{3}{2}}}\](doc) Magnetic field due to finite coil along axis
\[B = \frac{\mu_0 I N}{2 \ell} \left(\cos{\left(\varphi_{1} \right)} + \cos{\left(\varphi_{2} \right)}\right)\](doc) Magnetic field due to infinite wire
\[B = \frac{\mu I}{2 \pi r}\](doc) Magnetic field of coil
\[B = \frac{\mu_0 I N}{l}\](doc) Magnetic flux from magnetic flux density and area
\[\Phi_{\vec B} = B A \cos{\left(\varphi \right)}\](doc) Magnetic flux density from magnetic field strength
\[B = \mu H\](doc) Magnetic flux density of linear conductor of finite length
\[B = \frac{\mu I \left(\cos{\left(\varphi_{1} \right)} + \cos{\left(\varphi_{2} \right)}\right)}{4 \pi d}\](doc) Magnetic moment via current and contour area
\[m = I A\](doc) Period of rotation of charged particle in magnetic field
\[T = \frac{2 \pi m}{q B}\](doc) Power factor is real power over apparent power
\[\mathrm{pf} = \frac{P}{S}\](doc) Power via current and resistance
\[P = I^{2} R\](doc) Power via voltage and current
\[P = I V\](doc) Power via voltage and resistance
\[P = \frac{V^{2}}{R}\](doc) Radius of curvature of charged particle in magnetic field
\[r = \frac{m v}{q B}\](doc) Resistance via resistivity and dimensions
\[R = \frac{\rho l}{A}\](doc) Self-induced electromotive force via time derivative of current
\[\mathcal{E}{\left(t \right)} = - L \frac{d}{d t} I{\left(t \right)}\](doc) Voltage is electric field times distance
\[V = E d\](doc) Voltage is line integral of electric field
\[V = - \int\limits_{s_{0}}^{s_{1}} E_{s}{\left(s \right)}\, ds\]
(doc)
laws.electricity.circuits
(doc) Admittance in parallel connection
\[Y = \sum_i {Y}_{i}\](doc) Capacitance in parallel connection
\[C = \sum_i {C}_{i}\](doc) Capacitance is proportional to plate area
\[C = \frac{\varepsilon A}{d}\](doc) Capacitance of spherical capacitor
\[C = \frac{4 \pi \varepsilon r_\text{in} r_\text{out}}{r_\text{out} - r_\text{in}}\](doc) Capacitor impedance from capacitance and frequency
\[Z = - \frac{i}{\omega C}\](doc) Capacitor impedance from capacitor reactance
\[Z = - i X\](doc) Coil impedance from inductive reactance
\[Z = i X\](doc) Coil impedance via inductance and frequency
\[Z = i \omega L\](doc) Energy stored in capacitor via capacitance and voltage
\[W = \frac{C V^{2}}{2}\](doc) Energy stored in inductor via inductance and current
\[W = \frac{L I^{2}}{2}\](doc) Impedance in serial connection
\[Z = \sum_i {Z}_{i}\](doc) Impedance module of serial resistor-coil-capacitor circuit
\[|Z| = \sqrt{R^{2} + \left(X_\text{L} - X_\text{C}\right)^{2}}\](doc) Inductance in serial connection
\[L = \sum_i {L}_{i}\](doc) Input impedance of thin film resistor
\[Z = \frac{R}{1 + \frac{i \omega R C}{3}}\](doc) Oscillation period of inductor-capacitor network
\[T = 2 \pi \sqrt{L C}\](doc) Resistivity of serial resistors
\[R = \sum_i {R}_{i}\](doc) Sum of currents through junction is zero
\[\sum_k {I}_{k} = 0\](doc) Sum of voltages in loop is zero
\[\sum_i {V}_{i} = 0\](doc) Time constant of resistor-capacitor circuit
\[\tau = R C\](doc) Capacitance of p-n varactor junction
\[C = \frac{C_{0}}{\left(1 - \frac{V}{V_{0}}\right)^{y}}\](doc) Voltage across charging capacitor in serial resistor-capacitor circuit
\[V = V_{0} \left(1 - \exp{\left(- \frac{t}{\tau} \right)}\right)\]
(doc)
laws.electricity.circuits.couplers
(doc) Attenuation of three link microwave attenuator
\[A = \exp{\left(\operatorname{acosh}{\left(1 + \frac{R_{1}}{R_{2}} \right)} \right)}\](doc) Admittance of rectangular loop coupler
\[\begin{split}\begin{pmatrix} Y_{1} \\ Y_{2} \\ Y_{3} \\ Y_{4} \end{pmatrix} = \begin{pmatrix} \frac{Y_{0}}{\sqrt{k}} \\ Y_{0} \sqrt{\frac{k + 1}{k}} \\ Y_{0} \sqrt{\frac{k + 1}{k}} \\ \frac{Y_{0}}{\sqrt{k}} \end{pmatrix}\end{split}\](doc) Total gain of transistor amplifier
\[\text{gain} = \text{gain}_\text{i} \text{gain}_\text{t} \text{gain}_\text{o}\](doc) Impedance of Wilkinson microstrip divider
\[\begin{split}\begin{pmatrix} Z_{1} \\ Z_{2} \\ Z_{3} \\ Z_{4} \end{pmatrix} = \begin{pmatrix} Z_{0} \sqrt{k \left(1 + k^{2}\right)} \\ Z_{0} \sqrt{\frac{1 + k^{2}}{k^{3}}} \\ Z_{0} \sqrt{k} \\ \frac{Z_{0}}{\sqrt{k}} \end{pmatrix}\end{split}\](doc) Section length of multistage transformer
\[l = \frac{\lambda_{1} \lambda_{2}}{2 \left(\lambda_{1} + \lambda_{2}\right)}\](doc) Relative operating bandwidth of quarter-wave transformer
\[b = 2 - \frac{4}{\pi} \operatorname{acos}{\left(\frac{2 \Gamma \sqrt{R_\text{L} Z_\text{S}}}{\sqrt{1 - \Gamma^{2}} \left|{R_\text{L} - Z_\text{S}}\right|} \right)}\](doc) Resistor resistance in Wilkinson divider
\[R = \frac{R_{0} \left(1 + k^{2}\right)}{k}\](doc) Transient attenuation of separate loop coupler with cascade connection
\[A_{0} = 20 \log_{10} \left( \sin{\left(N \operatorname{asin}{\left(10^{\frac{A}{20}} \right)} \right)} \right)\](doc) Wave impedance of even mode of Lange coupler
\[\eta_\text{e} = \frac{\eta_\text{o} \left(C + \sqrt{C^{2} + \left(1 - C^{2}\right) \left(N - 1\right)^{2}}\right)}{\left(N - 1\right) \left(1 - C\right)}\](doc) Wave impedance of odd mode of Lange coupler
\[\eta_\text{o} = Z_\text{S} \sqrt{\frac{1 - C}{1 + C}} \frac{\left(N - 1\right) \left(1 + \sqrt{C^{2} + \left(1 - C^{2}\right) \left(N - 1\right)^{2}}\right)}{C + \sqrt{C^{2} + \left(1 - C^{2}\right) \left(N - 1\right)^{2}} + \left(N - 1\right) \left(1 - C\right)}\](doc) Wave impedance of Lange coupler
\[\eta = \sqrt{\frac{\eta_\text{o} \eta_\text{e} \left(\eta_\text{o} + \eta_\text{e}\right)^{2}}{\left(\eta_\text{o} + \eta_\text{e} \left(N - 1\right)\right) \left(\eta_\text{e} + \eta_\text{o} \left(N - 1\right)\right)}}\]
(doc)
laws.electricity.circuits.diodes
(doc) Current from voltage and diode constant in vacuum diode
\[I = g U_\text{a}^{\frac{3}{2}}\](doc) Current from voltage and triode constant in vacuum triode
\[I = g \left(U_\text{a} + \text{gain}_{V} U_\text{g}\right)^{\frac{3}{2}}\](doc) Diode constant for parallel-plane vacuum diode
\[g = \frac{4 \varepsilon_0}{9} \sqrt{\frac{2 e}{m_\text{e}}} \frac{A}{d^{2}}\](doc) Diode constant of cylindrical diode
\[g = \frac{\frac{4 \varepsilon_0}{9} \sqrt{\frac{2 e}{m_\text{e}}} A_\text{a}}{r_\text{a}^{2} \left(1 - \frac{r_\text{c}}{r_\text{a}}\right)^{2}}\](doc) Direct permeability coefficient of triode with flat electrodes
\[D = \frac{C_{1} d_{0}}{d C_{2}}\](doc) Internal resistance of vacuum diode
\[R = \frac{2}{3 g \sqrt{V}}\](doc) Limit operating frequency of vacuum diode
\[f = \frac{\sqrt{\frac{2 e V}{m_\text{e}}}}{6 d}\](doc) Charge density in diode
\[\rho = \frac{\frac{4 \varepsilon_0}{9} V}{d^{2}}\](doc) Steepness of volt-ampere characteristic of vacuum diode
\[S = \frac{3 g}{2} \sqrt{V}\](doc) Voltage of equivalent diode for pentode
\[V = \frac{V_{1} + V_{2} D_{1} + V_{3} D_{1} D_{2} + U_\text{a} D_{1} D_{2} D_{3}}{1 + D_{1} \left(\frac{d_\text{a}}{d_{1}}\right)^{\frac{4}{3}}}\](doc) Equivalent diode voltage for tetrode
\[V = \frac{V_{1} + V_{2} D_{1} + U_\text{a} D_{1} D_{2}}{1 + D_{1} \left(\frac{d_\text{a}}{d_{1}}\right)^{\frac{4}{3}}}\](doc) Equivalent diode voltage for triode
\[V = \frac{U_\text{g} + \frac{U_\text{a}}{\text{gain}_{V}}}{1 + \frac{\left(\frac{d_\text{a}}{d_\text{g}}\right)^{\frac{4}{3}}}{\text{gain}_{V}}}\]
(doc)
laws.electricity.circuits.filters
(doc) Transmission coefficient approximation of low-pass filter
\[H = \frac{1}{1 + e^{2} F^{2}}\](doc) Band pass Chebyshev filter order from distortion and frequency
\[N = \frac{\operatorname{acosh}{\left(\frac{e}{e_{1}} \right)}}{\operatorname{acosh}{\left(\frac{f_{1}^{2} - f_{0}^{2}}{\Delta f f_{1}} \right)}}\](doc) Butterworth filter order from distortion and frequency
\[N = \frac{\log \left( \frac{e_{1}}{e} \right)}{\log \left( \frac{f_{1}}{f_{0}} \right)}\](doc) Filter order from distortion and frequency
\[F = \frac{e_{1}}{e}\](doc) High pass Chebyshev filter from distortion and frequency
\[N = \frac{\operatorname{acosh}{\left(\frac{e_{1}}{e} \right)}}{\operatorname{acosh}{\left(\frac{f_{0}}{f_{1}} \right)}}\](doc) Low-pass Chebyshev filter order from distortion and frequencies
\[N = \frac{\operatorname{acos}{\left(\frac{e_{1}}{e} \right)}}{\operatorname{acos}{\left(\frac{f_{1}}{f_{0}} \right)}}\]
(doc)
laws.electricity.circuits.resonators
(doc) Coupling parameter of resonator from quality factor
\[g = \frac{Q_{0}}{Q_\text{e}}\](doc) Coupling parameter of resonator from resistance
\[g = \frac{R_{0}}{R_\text{L}}\](doc) Instantaneous energy of resonator
\[E = E_{0} \exp{\left(- \frac{\omega t}{Q} \right)}\](doc) Quality factor of loaded resonator from circuit parameters
\[Q_{1} = \frac{R_\text{L} R_{0}}{\omega L \left(R_\text{L} + R_{0}\right)}\](doc) Quality resonator of loaded resonator from quality factors
\[\frac{1}{Q_{1}} = \frac{1}{Q_{0}} + \frac{1}{Q_\text{e}}\](doc) Quality factor of resonator
\[Q = \frac{R}{\omega L}\](doc) Quality factor of empty rectangular resonator for traverse electric waves
\[Q = \frac{\omega \mu l_{3} l_{2} l_{1} \left(l_{2}^{2} + l_{1}^{2}\right)}{2 R_\text{s} \left(l_{2}^{3} \left(l_{1} + 2 l_{3}\right) + l_{1}^{3} \left(l_{2} + 2 l_{3}\right)\right)}\](doc) Quality factor of filled rectangular resonator
\[Q_{1} = \frac{1}{\frac{1}{Q_{0}} + \tan \delta}\](doc) Resonant frequency of rectangular resonator
\[f_\text{r} = \frac{c}{2 \sqrt{\varepsilon_\text{r} \mu_\text{r}}} \sqrt{\left(\frac{m}{l_{1}}\right)^{2} + \left(\frac{n}{l_{2}}\right)^{2} + \left(\frac{p}{l_{3}}\right)^{2}}\](doc) Resonant frequency of ring resonator
\[f = \frac{N c}{l \sqrt{\varepsilon_\text{r}}}\]
(doc)
laws.electricity.circuits.transmission_lines
(doc) Standing wave ratio from reflection coefficient
\[\text{SWR} = \frac{1 + \left|{\Gamma}\right|}{1 - \left|{\Gamma}\right|}\](doc) Standing wave ratio from voltage
\[\text{SWR} = \frac{\min{|V|}}{\max{|V|}}\](doc) Hybrid parameters matrix equation
\[\begin{split}\begin{pmatrix} V_\text{i} \\ I_\text{o} \end{pmatrix} = \begin{pmatrix} H_\text{ii} & H_\text{io} \\ H_\text{oi} & H_\text{oo} \end{pmatrix} \begin{pmatrix} I_\text{i} \\ V_\text{o} \end{pmatrix}\end{split}\](doc) Impedances of π-type circuit of transmission line
\[\begin{split}\begin{pmatrix} Z_{1} \\ Z_{2} \\ Z_{3} \end{pmatrix} = \begin{pmatrix} Z_\text{S} \coth{\left(\frac{l \gamma}{2} \right)} \\ Z_\text{S} \coth{\left(\frac{l \gamma}{2} \right)} \\ Z_\text{S} \sinh{\left(l \gamma \right)} \end{pmatrix}\end{split}\](doc) Impedances of T-type circuit of transmission line
\[\begin{split}\begin{pmatrix} Z_{1} \\ Z_{2} \\ Z_{3} \end{pmatrix} = \begin{pmatrix} Z_\text{S} \tanh{\left(\frac{l \gamma}{2} \right)} \\ Z_\text{S} \tanh{\left(\frac{l \gamma}{2} \right)} \\ \frac{Z_\text{S}}{\sinh{\left(l \gamma \right)}} \end{pmatrix}\end{split}\](doc) Input impedance from transmission matrix
\[Z_\text{in} = \frac{A Z_\text{L} + B}{C Z_\text{L} + D}\](doc) Input impedance of lossless transmission line
\[Z_\text{in} = \frac{Z_\text{S} \left(Z_\text{L} + i Z_\text{S} \tan{\left(\beta l \right)}\right)}{Z_\text{S} + i Z_\text{L} \tan{\left(\beta l \right)}}\](doc) Input impedance of lossy transmission line
\[Z_\text{in} = \frac{\cosh{\left(\gamma l \right)} Z_\text{L} + Z_\text{S} \sinh{\left(\gamma l \right)}}{\frac{Z_\text{L} \sinh{\left(\gamma l \right)}}{Z_\text{S}} + \cosh{\left(\gamma l \right)}}\](doc) Reflection coefficient from ratio of average power to incident power
\[\frac{\langle P \rangle}{P_\text{incident}} = 1 - \left|{\Gamma}\right|^{2}\](doc) Standing wave ratio from ratio of average power to incident power
\[\frac{\langle P \rangle}{P_\text{incident}} = \frac{4 \text{SWR}}{\left(\text{SWR} + 1\right)^{2}}\](doc) Reflection coefficient from load and surge impedance
\[\Gamma = \frac{Z_\text{L} - Z_\text{S}}{Z_\text{L} + Z_\text{S}}\](doc) Scattering matrix equation
\[\begin{split}\begin{pmatrix} b_\text{i} \\ b_\text{o} \end{pmatrix} = \begin{pmatrix} S_\text{ii} & S_\text{io} \\ S_\text{oi} & S_\text{oo} \end{pmatrix} \begin{pmatrix} a_\text{i} \\ a_\text{o} \end{pmatrix}\end{split}\](doc) Scattering matrix to transmission matrix
\[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \frac{\left(1 + S_\text{ii}\right) \left(1 - S_\text{oo}\right) + S_\text{io} S_\text{oi}}{2 S_\text{oi}} & \frac{Z_\text{S} \left(\left(1 + S_\text{ii}\right) \left(1 + S_\text{oo}\right) - S_\text{io} S_\text{oi}\right)}{2 S_\text{oi}} \\ \frac{\left(1 - S_\text{ii}\right) \left(1 - S_\text{oo}\right) - S_\text{io} S_\text{oi}}{Z_\text{S}} \frac{1}{2 S_\text{oi}} & \frac{\left(1 - S_\text{ii}\right) \left(1 + S_\text{oo}\right) + S_\text{io} S_\text{oi}}{2 S_\text{oi}} \end{pmatrix}\end{split}\](doc) Admittance matrix equation
\[\begin{split}\begin{pmatrix} I_\text{i} \\ I_\text{o} \end{pmatrix} = \begin{pmatrix} Y_\text{ii} & Y_\text{io} \\ Y_\text{oi} & Y_\text{oo} \end{pmatrix} \begin{pmatrix} V_\text{i} \\ V_\text{o} \end{pmatrix}\end{split}\](doc) Impedance matrix equation
\[\begin{split}\begin{pmatrix} V_\text{i} \\ V_\text{o} \end{pmatrix} = \begin{pmatrix} Z_\text{ii} & Z_\text{io} \\ Z_\text{oi} & Z_\text{oo} \end{pmatrix} \begin{pmatrix} I_\text{i} \\ I_\text{o} \end{pmatrix}\end{split}\](doc) Transmission matrix equation
\[\begin{split}\begin{pmatrix} V_\text{i} \\ I_\text{i} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} V_\text{o} \\ I_\text{o} \end{pmatrix}\end{split}\](doc) Transmission matrix for parallel load in line
\[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{1}{Z_\text{L}} & 1 \end{pmatrix}\end{split}\](doc) Transmission matrix for serial load in line
\[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & Z_\text{L} \\ 0 & 1 \end{pmatrix}\end{split}\](doc) Transmission matrix of lossless transmission line
\[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \cos{\left(\beta l \right)} & i Z_\text{S} \sin{\left(\beta l \right)} \\ \frac{i}{Z_\text{S}} \sin{\left(\beta l \right)} & \cos{\left(\beta l \right)} \end{pmatrix}\end{split}\](doc) Transmission matrix of lossy transmission line
\[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \cosh{\left(l \gamma \right)} & Z_\text{S} \sinh{\left(l \gamma \right)} \\ \frac{\sinh{\left(l \gamma \right)}}{Z_\text{S}} & \cosh{\left(l \gamma \right)} \end{pmatrix}\end{split}\](doc) Transmission matrix of π-type matrix
\[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 + \frac{Z_{3}}{Z_{2}} & Z_{3} \\ \frac{1}{Z_{1}} + \frac{1}{Z_{2}} + \frac{Z_{3}}{Z_{1} Z_{2}} & 1 + \frac{Z_{3}}{Z_{1}} \end{pmatrix}\end{split}\](doc) Transmission matrix of T-type circuit
\[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 + \frac{Z_{1}}{Z_{3}} & Z_{1} + Z_{2} + \frac{Z_{1} Z_{2}}{Z_{3}} \\ \frac{1}{Z_{3}} & 1 + \frac{Z_{2}}{Z_{3}} \end{pmatrix}\end{split}\](doc) Surge impedance of microstrip line when effective width is greater than substrate thickness
\[Z_\text{S} = \frac{Z_0}{\sqrt{\varepsilon_\text{eff}}} \frac{1}{\frac{w_\text{eff}}{h} + 1.393 + 0.667 \log \left( \frac{w_\text{eff}}{h} + 1.444 \right)}\](doc) Surge impedance of microstrip line when effective width is less than substrate thickness
\[Z_\text{S} = \frac{Z_0}{\sqrt{\varepsilon_\text{eff}}} \log \left( \frac{8 h}{w_\text{eff}} + \frac{w_\text{eff}}{4 h} \right)\]
(doc)
laws.electricity.circuits.transmission_lines.coplanar_lines
(doc) Effective permittivity of coplanar transmission line when distance is greater than thickness
\[\varepsilon_\text{eff} = 1 + \frac{\varepsilon_\text{r} - 1}{2} \frac{\log \left( \frac{2 \left(1 + \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}\right)}{1 - \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}} \right)}{\log \left( \frac{2 \left(1 + \left(1 - \left(\frac{\sinh{\left(\frac{\pi l}{4 h} \right)}}{\sinh{\left(\frac{\pi d}{4 h} \right)}}\right)^{2}\right)^{\frac{1}{4}}\right)}{1 - \left(1 - \left(\frac{\sinh{\left(\frac{\pi l}{4 h} \right)}}{\sinh{\left(\frac{\pi d}{4 h} \right)}}\right)^{2}\right)^{\frac{1}{4}}} \right)}\](doc) Effective permittivity of coplanar transmission line when distance is less than thickness
\[\varepsilon_\text{eff} = \frac{1 + \varepsilon_\text{r}}{2}\](doc) Wave impedance of coplanar line when hyperbolic sine ratio squared is between \(0\) and \(\frac{1}{2}\)
\[\eta = \frac{R_0}{\sqrt{\varepsilon_\text{eff}}} \log \left( \frac{2 \left(1 + \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}\right)}{1 - \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}} \right)\](doc) Wave impedance of coplanar line when length to distance ratio squared is between \(\frac{1}{2}\) and \(1\)
\[\eta = \frac{R_0}{\sqrt{\varepsilon_\text{eff}}} \frac{1}{\log \left( \frac{2 \left(1 + \sqrt{\frac{l}{d}}\right)}{1 - \sqrt{\frac{l}{d}}} \right)}\]
(doc)
laws.electricity.circuits.transmission_lines.microstrip_lines
(doc) Attenuation coefficient in dielectric substate of microstrip line
\[\alpha = 27.3 \frac{\varepsilon_\text{r}}{\sqrt{\varepsilon_\text{eff}}} \frac{\varepsilon_\text{eff} - 1}{\varepsilon_\text{r} - 1} \frac{\tan \delta}{\lambda}\](doc) Attenuation coefficient in metal of microstrip line when width is greater than thickness
\[\alpha = \frac{a R_\text{s} Z_\text{S} \varepsilon_\text{eff}}{h} \left(\frac{w_\text{eff}}{h} + \frac{0.667 \frac{w_\text{eff}}{h}}{\frac{w_\text{eff}}{h} + 1.444}\right) \left(1 + \frac{1 - \frac{1.25}{\pi} \frac{t}{h} + \frac{1.25}{\pi} \log \left( \frac{2 h}{t} \right)}{\frac{w_\text{eff}}{h}}\right)\](doc) Attenuation coefficient in microstrip metal when thickness is greater than width times \(2 \pi\)
\[\alpha = \frac{1.38 R_\text{s}}{h Z_\text{S}} \frac{32 - \left(\frac{w_\text{eff}}{h}\right)^{2}}{32 + \left(\frac{w_\text{eff}}{h}\right)^{2}} \left(1 + \frac{h}{w_\text{eff}} \left(1 + \frac{1.25}{\pi} \frac{t}{w} + \frac{1.25}{\pi} \log \left( \frac{4 \pi w}{t} \right)\right)\right)\](doc) Attenuation coefficient in microstrip metal when thickness is less than width times \(2 \pi\)
\[\alpha = \frac{1.38 R_\text{s}}{h Z_\text{S}} \frac{32 - \left(\frac{w_\text{eff}}{h}\right)^{2}}{32 + \left(\frac{w_\text{eff}}{h}\right)^{2}} \left(1 + \frac{h}{w_\text{eff}} \left(1 - \frac{1.25}{\pi} \frac{t}{h} + \frac{1.25}{\pi} \log \left( 2 \frac{h}{t} \right)\right)\right)\](doc) Effective permittivity of microstrip line when width is greater than thickness
\[\varepsilon_\text{eff} = \frac{1 + \varepsilon_\text{r}}{2} + \frac{\varepsilon_\text{r} - 1}{2} \frac{1}{\sqrt{1 + \frac{12 h}{w}}} - \frac{\varepsilon_\text{r} - 1}{4.6} \frac{t}{h} \sqrt{\frac{h}{w}}\](doc) Effective permittivity of microstrip line when width is less than thickness
\[\varepsilon_\text{eff} = \frac{1 + \varepsilon_\text{r}}{2} + \frac{\varepsilon_\text{r} - 1}{2} \left(\frac{1}{\sqrt{1 + \frac{12 h}{w}}} + 0.04 \left(1 - \frac{w}{h}\right)^{2}\right) - \frac{\varepsilon_\text{r} - 1}{4.6} \frac{t}{h} \sqrt{\frac{h}{w}}\](doc) Effective permittivity of microstrip line from frequency
\[\varepsilon_\text{eff} = \left(\frac{\sqrt{\varepsilon_\text{r}} - \sqrt{\varepsilon_{\text{eff}, 0}}}{1 + \frac{4}{\left(4 h f \left(1 + 2 \log \left( 1 + \frac{w}{h} \right)\right)^{2} \sqrt{\varepsilon_\text{r} - 1} \frac{1}{2 c}\right)^{\frac{3}{2}}}} + \sqrt{\varepsilon_{\text{eff}, 0}}\right)^{2}\](doc) Effective width of microstrip line when width is greater than thickness
\[\frac{w_\text{eff}}{h} = \frac{w}{h} + \frac{1.25}{\pi} \frac{t}{h} \left(1 + \log \left( 2 \frac{h}{t} \right)\right)\](doc) Effective width of microstrip line when width is less than thickness
\[\frac{w_\text{eff}}{h} = \frac{w}{h} + \frac{1.25}{\pi} \frac{t}{h} \left(1 + \log \left( 4 \pi \frac{w}{t} \right)\right)\](doc) Inductance of microstrip line strip
\[L = L_0 l \left(\log \left( \frac{l}{w + t} \right) + 1.193 + \frac{0.2235}{\frac{l}{w + t}}\right)\](doc) Resistance of microstrip line
\[R = \left(1.4 + 0.217 \log \left( \frac{w}{5 t} \right)\right) \frac{R_\text{s} l}{2 \left(w + t\right)}\](doc) Short circuit inductance of microstrip line
\[L = \frac{\mu_0}{2 \pi} \left(h \log \left( \frac{h + \sqrt{r^{2} + h^{2}}}{r} \right) + 1.5 \left(r - \sqrt{r^{2} + h^{2}}\right)\right)\](doc) Surge impedance of microstrip line from frequency
\[Z_\text{S} = Z_{\text{S}, 0} \sqrt{\frac{\varepsilon_{\text{eff}, 0}}{\varepsilon_\text{eff}}} \frac{\varepsilon_\text{eff} - 1}{\varepsilon_{\text{eff}, 0} - 1}\]
(doc)
laws.electricity.circuits.waveguides
(doc) Attenuation coefficient in dielectric
\[\alpha = \frac{\omega \sqrt{\varepsilon \mu} \tan \delta}{2}\](doc) Attenuation coefficient in dielectric in rectangular waveguide
\[\alpha = \frac{\pi}{\lambda} \frac{\eta}{\eta_{0}} \tan \delta\](doc) Attenuation coefficient in metal
\[\alpha = \frac{\sqrt{\frac{\varepsilon_\text{r}}{\mu_\text{r}}} \left(\frac{R_\text{i}}{d_\text{i}} + \frac{R_\text{o}}{d_\text{o}}\right)}{\pi R_0 \log \left( \frac{d_\text{o}}{d_\text{i}} \right)}\](doc) Attenuation coefficient in metal in rectangular waveguide for transverse electric waves
\[\alpha = \frac{2 \frac{R_\text{s}}{R}}{a \sqrt{1 - \left(\frac{\lambda}{2 \lambda_\text{c}}\right)^{2}}} \left(\left(1 + \frac{a}{b}\right) \left(\frac{\lambda}{2 \lambda_\text{c}}\right)^{2} + \frac{\left(1 - \left(\frac{\lambda}{2 \lambda_\text{c}}\right)^{2}\right) \frac{a}{b} \left(\frac{a}{b} n^{2} + m^{2}\right)}{\left(\frac{a}{b} n\right)^{2} + m^{2}}\right)\](doc) Attenuation coefficient in metal in rectangular waveguide for transverse magnetic waves
\[\alpha = \frac{2 \frac{R_\text{s}}{R} \left(n^{2} \left(\frac{a}{b}\right)^{3} + m^{2}\right)}{a \sqrt{1 - \left(\frac{\lambda}{2 \lambda_\text{c}}\right)^{2}} \left(n^{2} \left(\frac{a}{b}\right)^{2} + m^{2}\right)}\](doc) Wave impedance in rectangular waveguide for transverse electric waves
\[\eta = \frac{\eta_{0}}{\sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}}\](doc) Characteristic resistance of rectangular waveguide for transverse magnetic waves
\[\eta = \eta_{0} \sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}\](doc) Critical wavelength in rectangular waveguide
\[\lambda_\text{c} = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}}\](doc) Group speed of wave in rectangular waveguide
\[v_\text{g} = \frac{c \sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}}{\sqrt{\varepsilon_\text{r} \mu_\text{r}}}\](doc) Maximum electric field strength of main wave in rectangular waveguide
\[E = \frac{2 Z_0 a H}{\lambda \sqrt{\varepsilon_\text{r}}}\](doc) Maximum voltage in coaxial line
\[V = \frac{E d_\text{o} \log \left( \frac{d_\text{o}}{d_\text{i}} \right)}{2}\](doc) Phase speed of wave in rectangular waveguide
\[v = \frac{c}{\sqrt{\varepsilon_\text{r} \mu_\text{r} \left(1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}\right)}}\](doc) Power carried by coaxial waveguide
\[P = \frac{V^{2}}{Z_0} \sqrt{\frac{\varepsilon_\text{r}}{\mu_\text{r} \log \left( \frac{d_\text{o}}{d_\text{i}} \right)}}\](doc) Power carried by main wave of rectangular waveguide
\[P = \frac{a b \sqrt{1 - \left(\frac{\lambda}{2 a}\right)^{2}} E^{2}}{4 R}\](doc) Specific capacitance of coaxial waveguide
\[C = \frac{2 \pi \varepsilon}{\log \left( \frac{r_\text{o}}{r_\text{i}} \right)}\](doc) Specific conductivity of coaxial waveguide
\[G = \omega C \tan \delta\](doc) Specific inductance of coaxial waveguide
\[L = \frac{\mu}{2 \pi} \log \left( \frac{r_\text{o}}{r_\text{i}} \right)\](doc) Specific resistance of coaxial waveguide
\[R = \frac{\sqrt{\frac{\omega \mu}{2 G}}}{2 \pi} \left(\frac{1}{r_\text{i}} - \frac{1}{r_\text{o}}\right)\](doc) Surface resistance of metal
\[R = \sqrt{\frac{\omega \mu}{2 G}}\](doc) Wave resistance of coaxial waveguide
\[R = \frac{\sqrt{\frac{\mu_0 \mu_\text{r}}{\varepsilon_0 \varepsilon_\text{r}}}}{2 \pi} \log \left( \frac{r_\text{o}}{r_\text{i}} \right)\](doc) Wavelength in rectangular waveguide
\[\lambda_\text{g} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}}\]
(doc)
laws.electricity.maxwell_equations
(doc) Divergence of electric displacement field is volumetric charge density
\[\text{div} \, {\vec D} \left( {\vec r} \right) = \rho{\left({\vec r} \right)}\](doc) Curl of magnetic field is free current density and electric displacement derivative
\[\text{curl} \, {\vec H} \left( {\vec r}, t \right) = {\vec J}_\text{f} \left( {\vec r}, t \right) + \frac{\partial}{\partial t} {\vec D} \left( {\vec r}, t \right)\](doc) Curl of electric field is negative magnetic flux density derivative
\[\text{curl} \, {\vec E} \left( {\vec r}, t \right) = - \frac{\partial}{\partial t} {\vec B} \left( {\vec r}, t \right)\]
(doc)
laws.electricity.vector
(doc) Current density is charge density times drift velocity
\[{\vec j} = \rho {\vec u}\](doc) Electric dipole moment is charge times displacement
\[{\vec p} = q {\vec d}\](doc) Electric dipole moment of electrically neutral system
\[{\vec p} = \sum_i {q}_{i} {{\vec r}}_{i}\](doc) Electric field is force over test charge (Vector)
\[{\vec E} = \frac{{\vec F}}{q_{0}}\](doc) Electric flux of uniform electric field
\[\Phi_{\vec E} = \left( {\vec E}, {\vec A} \right)\](doc) Force acting on dipole in non-uniform electric field
\[{\vec F} = p \frac{d}{d x} {\vec E} \left( x \right)\](doc) Lorentz force via electromagnetic field
\[{\vec F} = q \left({\vec E} + \left[ {\vec v}, {\vec B} \right]\right)\](doc) Magnetic field due to constant filamentary current
\[d \vec{B} = \frac{\mu}{4 \pi} \frac{I \left[ d \vec{\ell}, {\vec r} - \vec{\ell} \right]}{\left \Vert {\vec r} - \vec{\ell} \right \Vert^{3}}\](doc) Potential energy of electric dipole in uniform electric field
\[U = - \left( {\vec p}, {\vec E} \right)\](doc) Torque due to electric dipole moment in uniform electric field
\[{\vec \tau} = \left[ {\vec p}, {\vec E} \right]\]
(doc)
laws.geometry
(doc) Cross product is proportional to sine of angle between vectors
\[\left \Vert \left[ \vec u, \vec v \right] \right \Vert = u v \sin{\left(\varphi \right)}\](doc) Dot product is proportional to cosine of angle between vectors
\[\left( \vec u, \vec v \right) = u v \cos{\left(\varphi \right)}\](doc) Scalar projection is vector length times cosine of angle
\[s = a \cos{\left(\varphi \right)}\]
(doc)
laws.geometry.vector
(doc) Dot product is proportional to cosine of angle between vectors (vector)
\[\left( {\vec u}, {\vec v} \right) = \left \Vert {\vec u} \right \Vert \left \Vert {\vec v} \right \Vert \cos{\left(\varphi \right)}\]
(doc)
laws.gravity
(doc) Angle of rotation during gravitational maneuver
\[\varphi = 2 \operatorname{atan}{\left(\frac{G m}{d v^{2}} \right)}\](doc) Area rate of change is proportional to angular momentum
\[\frac{d}{d t} A{\left(t \right)} = \frac{L}{2 m}\](doc) Corrected planet period squared is proportional to cube of semimajor axis
\[T^{2} = \frac{4 \pi^{2} a^{3}}{G \left(M + m\right)}\](doc) Easterly deviation from plumbline of falling bodies
\[s_\text{east} = \frac{4 \pi}{3} \frac{t}{T} h \cos{\left(\phi \right)}\](doc) Eccentricity of orbit
\[e = \sqrt{1 - \left(\frac{b}{a}\right)^{2}}\](doc) First escape speed
\[v = \sqrt{\frac{G m}{r + h}}\](doc) Free fall acceleration from height
\[a = \frac{G m}{\left(r + h\right)^{2}}\](doc) Gravitational potential energy
\[U = - \frac{G m_{1} m_{2}}{d}\](doc) Gravitational radius of massive body
\[r = \frac{2 G m}{c^{2}}\](doc) Gravitational force from mass and distance
\[F = \frac{G m_{1} m_{2}}{d^{2}}\](doc) Kepler’s constant via attracting body mass
\[\mathfrak{K} = \frac{G M}{4 \pi^{2}}\](doc) Semimajor axis of orbit via mass and speed
\[a = \frac{G m}{v^{2}}\](doc) Maximum angle of rotation during gravitational maneuver
\[\varphi = \operatorname{atan}{\left(\left(\frac{v_{1}}{v}\right)^{2} \right)}\](doc) Maximum height of body thrown at angle to horizon
\[h = \frac{v_{0}^{2} \sin^{2}{\left(\varphi \right)}}{2 g}\](doc) Time of flight of a projectile via initial velocity
\[t = \frac{2 v_{0} \sin{\left(\varphi \right)}}{g}\](doc) Time of flight of a projectile via maximum height
\[t = \sqrt{\frac{2 h}{g}}\](doc) Orbital speed from semimajor axis and planet mass
\[v = \sqrt{G m \left(\frac{2}{d} - \frac{1}{a}\right)}\](doc) Planet period squared is proportional to cube of semimajor axis
\[T^{2} = \frac{4 \pi^{2}}{G m} a^{3}\](doc) Radius of geostationary orbit
\[r = \sqrt[3]{\frac{G m}{\omega^{2}}}\](doc) Horizontal displacement of projectile
\[d = \frac{v_{0}^{2} \sin{\left(2 \varphi \right)}}{g}\](doc) Second escape velocity
\[v = \sqrt{\frac{2 G m}{r + h}}\](doc) Southerly deviation from plumbline of falling bodies
\[s_\text{south} = \pi \frac{t}{T} s_\text{east} \sin{\left(\phi \right)}\](doc) Third cosmic speed from orbital and second cosmic speed
\[v_{3} = \sqrt{\left(\sqrt{2} - 1\right)^{2} v^{2} + v_{2}^{2}}\]
(doc)
laws.gravity.radial_motion
(doc) Average potential energy via average kinetic energy
\[\langle U \rangle = - 2 \langle K \rangle\](doc) Potential energy of radial planetary motion
\[U_\text{tot} = U_\text{gr} + \frac{L^{2}}{2 m d^{2}}\](doc) Radial kinetic energy plus potential energy is constant
\[\frac{m v_{r}^{2}}{2} + U = E\](doc) Semimajor axis via Kepler’s constant and total energy
\[a = \frac{2 \pi^{2} \mathfrak{K}}{\left|{\varepsilon}\right|}\](doc) Semiminor axis of elliptical orbit via orbit parameters
\[b = 2 \sigma \sqrt{\frac{a}{G M}}\](doc) Total energy is negative average kinetic energy
\[E = - \langle K \rangle\]
(doc)
laws.gravity.vector
(doc) Acceleration due to gravity via gravity force and centripetal acceleration
\[{\vec g} = \frac{{\vec F}}{m} - {\vec a}_\text{cp}\](doc) Falling body displacement
\[{\vec s} = {\vec v}_{0} t + t^{2} \left(\frac{{\vec g}}{2} + \left[ {\vec v}_{0}, {\vec \omega} \right]\right) + \frac{t^{3}}{3} \left(\left[ {\vec g}, {\vec \omega} \right] + 2 \left[ \left[ {\vec v}_{0}, {\vec \omega} \right], {\vec \omega} \right]\right) + \frac{t^{4}}{6} \left[ \left[ {\vec g}, {\vec \omega} \right], {\vec \omega} \right]\](doc) Relative acceleration from force and acceleration due to gravity
\[{\vec a}_\text{rel} = {\vec g} - {\vec a}_\text{Cor} + \frac{{\vec F}}{m}\]
(doc)
laws.hydro
(doc) Bulk stress is bulk modulus times strain
\[\Delta p = K e_{V}\](doc) Capillary height via surface tension and contact angle
\[h = \frac{2 \gamma \cos{\left(\varphi \right)}}{\rho r g}\](doc) Dynamic pressure from density and flow speed
\[q = \frac{\rho u^{2}}{2}\](doc) Efficiency of hydraulic press from force and height
\[\eta = \frac{F_{2} d_{2}}{F_{1} d_{1}}\](doc) Efflux speed via height
\[u = \sqrt{2 g h}\](doc) Efflux speed via hydrostatic pressure and density
\[u = \sqrt{\frac{2 p}{\rho}}\](doc) Excess pressure under curved surface of bubble
\[\Delta p = \frac{4 \gamma}{r}\](doc) Force to area ratio in hydraulic press
\[\frac{F_{1}}{A_{1}} = \frac{F_{2}}{A_{2}}\](doc) Froude number via flow speed and characteristic length
\[\text{Fr} = \frac{u}{\sqrt{g l_\text{c}}}\](doc) Hydrostatic pressure via density and height
\[p = \rho g h\](doc) Hydrostatic pressure via density, height and acceleration
\[p = \rho a h\](doc) Inner pressure is constant
\[\frac{d}{d t} p_\text{inner}{\left(t \right)} = 0\](doc) Inner pressure is sum of pressures
\[p_\text{inner} = p_\text{static} + q + p\](doc) Laplace pressure is pressure difference
\[p_\text{L} = p_\text{o} - p_\text{i}\](doc) Mach number is flow speed over speed of sound
\[\text{M} = \frac{u}{c}\](doc) Nusselt number via thermal parameters and characteristic length
\[\text{Nu} = \frac{h l_\text{c}}{k}\](doc) Pressure difference at pipe ends from dynamic viscosity and flow rate
\[\Delta p = \frac{8 \mu l Q}{\pi r^{4}}\](doc) Pressure of liquid in vessel moving horizontally
\[p = \rho \sqrt{g^{2} + a^{2}} h\](doc) Pressure of liquid in vessel moving vertically
\[p = \rho \sqrt{\left(g + a\right)^{2}} h\](doc) Reynolds number via fluid parameters and characteristic length
\[\text{Re} = \frac{\rho u l_\text{c}}{\mu}\](doc) Shear stress is proportional to speed gradient
\[\tau = \mu \frac{d}{d x} u{\left(x \right)}\](doc) Submerged volume of floating body via density ratio
\[\frac{V_\text{fl}}{V} = \frac{\rho}{\rho_\text{fl}}\](doc) Surface tension force via surface tension and length
\[F = \gamma l\](doc) Volume flux is constant
\[\frac{d}{d t} A{\left(t \right)} u{\left(t \right)} = 0\](doc) Apparent weight of a fully submersed body in fluid
\[W_\text{fl} = W_\text{vac} \left(1 - \frac{\rho_\text{fl}}{\rho_\text{b}}\right)\]
(doc)
laws.kinematics
(doc) Angular momentum is rotational inertia times angular speed
\[L = I \omega\](doc) Angular position is arc length over radius
\[\theta = \frac{s}{r}\](doc) Angular position via constant angular acceleration and time
\[\theta = \theta_{0} + \omega_{0} t + \frac{\alpha t^{2}}{2}\](doc) Angular position via constant angular speed and time
\[\theta = \theta_{0} + \omega t\](doc) Angular speed via constant angular acceleration and time
\[\omega = \omega_{0} + \alpha t\](doc) Average angular speed is angular distance over time
\[\langle \omega \rangle = \frac{\theta}{t}\](doc) Centripetal acceleration via angular speed and radius
\[a_{n} = \omega^{2} r\](doc) Centripetal acceleration via linear speed and radius
\[a_{n} = \frac{v^{2}}{r}\](doc) Classical addition of velocities
\[v_{OA} = v_{OB} + v_{BA}\](doc) Displacement in simple harmonic motion
\[q = q_\text{max} \cos{\left(\omega t + \varphi \right)}\](doc) Position via constant acceleration and time
\[x = x_{0} + v_{0} t + \frac{a t^{2}}{2}\](doc) Position via constant speed and time
\[x = x_{0} + v t\](doc) Speed via angular speed and radius
\[v = \omega r\](doc) Speed via constant acceleration and time
\[v = v_{0} + a t\](doc) Tangential acceleration via angular acceleration and radius
\[a_{\tau} = \alpha r\]
(doc)
laws.kinematics.damped_oscillations
(doc) Damped angular frequency
\[\omega_\text{d} = \omega \sqrt{1 - \zeta^{2}}\](doc) Damping ratio from decay constant and undamped frequency
\[\zeta = \frac{\lambda}{\omega}\](doc) Displacement in critical damping
\[d = \exp{\left(- \omega t \right)} \left(x_{0} + \left(v_{0} + x_{0} \omega\right) t\right)\](doc) Displacement in underdamping
\[d = a \exp{\left(- \lambda t \right)} \cos{\left(\omega_\text{d} t + \varphi \right)}\]
(doc)
laws.kinematics.rotational_inertia
(doc) Rotational inertia about axis and through center of mass
\[I = I_\text{com} + m d^{2}\](doc) Rotational inertia in terms of Cartesian integral
\[I = \int\limits_{z_{0}}^{z_{1}}\int\limits_{y_{0}}^{y_{1}}\int\limits_{x_{0}}^{x_{1}} \rho{\left(x,y,z \right)} r^{2}{\left(x,y,z \right)}\, dx\, dy\, dz\](doc) Rotational inertia in terms of a cylindrical integral
\[I = \int\limits_{h_{0}}^{h_{1}}\int\limits_{\varphi_{0}}^{\varphi_{1}}\int\limits_{r_{0}}^{r_{1}} \rho{\left(r,\varphi,h \right)} r^{3}\, dr\, d\varphi\, dh\](doc) Rotational inertia is additive
\[I = \sum_k {I}_{k}\](doc) Rotational inertia of a particle
\[I = m r^{2}\]
(doc)
laws.kinematics.rotational_inertia.geometries
(doc)
laws.kinematics.vector
(doc) Absolute velocity of arbitrary motion
\[{\vec v}_\text{abs} = {\vec v}_\text{rel} + {\vec v}_\text{tr}\](doc) Acceleration due to non-uniform rotation
\[{\vec a}_\text{rot} = \left[ \frac{d}{d t} {\vec \omega} \left( t \right), {\vec r} \right]\](doc) Acceleration is normal plus tangential acceleration
\[{\vec a} = {\vec a}_\text{n} + {\vec a}_\text{t}\](doc) Acceleration of transfer between relative frames
\[{\vec a}_\text{tr} = {\vec a}_{0} + {\vec a}_\text{cp} + {\vec a}_\text{rot}\](doc) Centrifugal acceleration via centripetal acceleration
\[{\vec a}_\text{cf} = - {\vec a}_\text{cp}\](doc) Centripetal acceleration via cross product
\[{\vec a}_\text{cp} = \left[ {\vec \omega}, \left[ {\vec \omega}, {\vec r} \right] \right]\](doc) Centripetal acceleration via vector rejection
\[{\vec a}_\text{cp} = {\vec \omega} \left( {\vec r}, {\vec \omega} \right) - {\vec r} \left( {\vec \omega}, {\vec \omega} \right)\](doc) Coriolis acceleration
\[{\vec a}_\text{Cor} = 2 \left[ {\vec v}_\text{rel}, {\vec \omega} \right]\](doc) Linear displacement is angular displacement cross radius
\[{\vec s} = \left[ {\vec \theta}, {\vec r} \right]\](doc) Velocity of transfer between reference frames
\[{\vec v}_\text{tr} = {\vec v}_{0} + \left[ {\vec \omega}, {\vec r} \right]\](doc) Velocity relative to reference frame
\[{\vec v} \left( t \right) = \frac{d}{d t} {\vec r} \left( t \right)\]
(doc)
laws.nuclear
(doc) Diffusion area from diffusion coefficient and absorption cross section
\[L^{2} = \frac{D}{\Sigma_\text{a}}\](doc) Diffusion equation from neutron flux
\[- D \nabla^{2} \Phi{\left(x \right)} + \Sigma_\text{a} \Phi{\left(x \right)} = \frac{\nu}{k_\text{eff}} \Sigma_\text{f} \Phi{\left(x \right)}\](doc) Effective multiplication factor from infinite multiplication factor and probabilities
\[k_\text{eff} = k_{\infty} P_\text{FNL} P_\text{TNL}\](doc) Fast fission factor from resonance escape probability
\[\varepsilon = 1 + \frac{1 - p}{p} \frac{\nu_\text{f} P_\text{FAF} u_\text{f}}{\nu_\text{t} P_\text{TNL} P_\text{TAF} f}\](doc) Fast non-leakage probability from Fermi age and geometric buckling
\[P_\text{FNL} = \exp{\left(- B_\text{g}^2 \tau \right)}\](doc) Infinite multiplication factor formula
\[k_{\infty} = \eta \varepsilon p f\](doc) Infinite multiplication factor from macroscopic cross sections
\[k_{\infty} = \frac{\nu \Sigma_\text{f}}{\Sigma_\text{a}}\](doc) Solution to the exponential decay equation
\[X = X_{0} \cdot 2^{- \frac{t}{t_{1/2}}}\](doc) Macroscopic cross section from mean free path
\[\Sigma = \frac{1}{\lambda}\](doc) Macroscopic cross section from microscopic cross section and number density
\[\Sigma = \sigma n\](doc) Macroscopic transport cross section from macroscopic scattering cross section
\[\Sigma_\text{tr} = \sigma_\text{s} \left(1 - \mu\right)\](doc) Migration area from diffusion length and Fermi age
\[M^{2} = L^{2} + \tau\](doc) Average cosine of scattering angle from mass number
\[\mu = \frac{2}{3 A}\](doc) Diffusion coefficient from macroscopic scattering cross section
\[D = \frac{1}{3 \Sigma_\text{tr}}\](doc) Reproduction factor from macroscopic cross sections in fuel
\[\eta = \frac{\nu \Sigma_\text{f}^\text{f}}{\Sigma_\text{a}^\text{f}}\](doc) Resonance escape probability from resonance absorption integral
\[p = \exp{\left(- \frac{n J_\text{eff}}{\xi \Sigma_\text{s}} \right)}\](doc) Thermal non-leakage probability from diffusion area and geometric buckling
\[P_\text{TNL} = \frac{1}{1 + L_\text{th}^2 B_\text{g}^2}\](doc) Thermal utilization factor from macroscopic absorption cross sections
\[f = \frac{\Sigma_\text{a}^\text{f}}{\Sigma_\text{a}}\]
(doc)
laws.nuclear.buckling
(doc) Geometric buckling for uniform cylinder
\[B_\text{g}^2 = \left(\frac{2.405}{r}\right)^{2} + \left(\frac{\pi}{h}\right)^{2}\](doc) Geometric buckling for uniform parallelepiped
\[B_\text{g}^2 = \left(\frac{\pi}{l_{1}}\right)^{2} + \left(\frac{\pi}{l_{2}}\right)^{2} + \left(\frac{\pi}{l_{3}}\right)^{2}\](doc) Geometric buckling for uniform slab
\[B_\text{g}^2 = \left(\frac{\pi}{h}\right)^{2}\](doc) Geometric buckling for uniform sphere
\[B_\text{g}^2 = \left(\frac{\pi}{r}\right)^{2}\](doc) Geometric buckling from multiplication factors and diffusion area
\[B_\text{g}^2 = \frac{\frac{k_{\infty}}{k_\text{eff}} - 1}{L^{2}}\](doc) Geometric buckling from macroscopic cross sections and diffusion coefficient
\[B_\text{g}^2 = \frac{\frac{\nu}{k_\text{eff}} \Sigma_\text{f} - \Sigma_\text{a}}{D}\](doc) Geometric buckling from neutron flux
\[B_\text{g}^2 = - \frac{\nabla^{2} \Phi{\left(x \right)}}{\Phi{\left(x \right)}}\](doc) Material buckling from material cross sections and diffusion coefficient
\[B_\text{m}^2 = \frac{\nu \Sigma_\text{f} - \Sigma_\text{a}}{D}\](doc) Neutron flux for uniform cylinder
\[\Phi = \Phi_{0} J_{0}\left(\frac{2.405}{r_{0}} r\right) \cos{\left(\frac{\pi}{h_{0}} h \right)}\](doc) Neutron flux for uniform parallelepiped
\[\Phi = \Phi_{0} \cos{\left(\frac{\pi}{l_{2}} x_{1} \right)} \cos{\left(\frac{\pi}{l_{1}} x_{2} \right)} \cos{\left(\frac{\pi}{l_{3}} x_{3} \right)}\](doc) Neutron flux for uniform slab
\[\Phi = \Phi_{0} \cos{\left(\frac{\pi}{h} z \right)}\](doc) Neutron flux for uniform sphere
\[\Phi = \Phi_{0} \frac{\sin{\left(\frac{\pi}{r_{0}} r \right)}}{r}\]
(doc)
laws.optics
(doc) Angle of light deflection in prism
\[b = a \left(n - 1\right)\](doc) Angular magnification of telescope
\[M_\text{A} = \frac{F}{f}\](doc) Bragg diffraction from angle of diffraction and wavelength
\[d = \frac{N \lambda}{2 \sin{\left(\varphi \right)}}\](doc) Film thickness for minimum interference
\[h = \frac{k \lambda}{2 n \cos{\left(\varphi \right)}}\](doc) Focal length of a concave spherical mirror
\[f = \frac{r}{2}\](doc) Interference due to two slits
\[\Lambda = \frac{x d}{l}\](doc) Interference maximum
\[\Lambda = N \lambda\](doc) Interference minimum
\[\Lambda = \frac{\left(2 N + 1\right) \lambda}{2}\](doc) Irradiance of light after polarizer
\[E_\text{e} = E_{\text{e}0} k \cos^{2}{\left(\varphi \right)}\](doc) Lens focus from object and image
\[\frac{1}{f} = \frac{1}{d_\text{o}} + \frac{1}{d_\text{i}}\](doc) Light pressure
\[p = \frac{I \left(1 + R\right)}{c}\](doc) Linear magnification from distance to object and distance to image
\[M = \frac{d_\text{i}}{d_\text{o}}\](doc) Linear magnification from object height and image height
\[M = \frac{h_\text{i}}{h_\text{o}}\](doc) Optical distance difference from optical distances
\[\Delta \Lambda = \Lambda_{2} - \Lambda_{1}\](doc) Optical path length from geometrical path length and refractive index
\[\Lambda = n s\](doc) Optical power from focus distance
\[D = \frac{1}{f}\](doc) Optical power from thin lens radii and refractive indices
\[D = \left(n - n_{0}\right) \left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)\](doc) Optical power of spherical lens from refractive indices and distances
\[- \frac{n_{0}}{d_\text{o}} + \frac{n}{d_\text{i}} = \frac{n - n_{0}}{r}\](doc) Radiation intensity from energy, area, and time
\[I = \frac{E}{A t}\](doc) Radius of dark Newton’s ring formula
\[r = \sqrt{\frac{N R \lambda}{n}}\](doc) Refraction angle from enviroments
\[n_{1} \sin{\left(\varphi_{1} \right)} = n_{2} \sin{\left(\varphi_{2} \right)}\](doc) Relative aperture of telescope
\[A = \frac{D}{f}\](doc) Resolution of telescope
\[\theta = A \frac{\lambda}{D}\]
(doc)
laws.quantities
(doc) Fractional change is change over initial value
\[e_{X} = \frac{\Delta X}{X}\](doc) Quantity is areal density times volume
\[X = \sigma_{X} A\](doc) Extensive quantity is linear density times length
\[X = \lambda_{X} l\](doc) Quantity is molar quantity times amount of substance
\[X = x_{m} n\](doc) Quantity is specific quantity times mass
\[X = x m\](doc) Quantity is volumetric density times volume
\[X = \rho_{X} V\]
(doc)
laws.quantum_mechanics
(doc) Probability density of quantum state
\[\rho = \left|{\psi}\right|^{2}\]
(doc)
laws.quantum_mechanics.harmonic_oscillator
(doc) Energy levels of harmonic oscillator
\[E_{n} = \left(N + \frac{1}{2}\right) \hbar \omega\](doc) Quantum harmonic oscillator equation
\[- \frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi{\left(x \right)} + \frac{m \omega^{2}}{2} x^{2} \psi{\left(x \right)} = E \psi{\left(x \right)}\](doc) Wave eigenfunctions of quantum harmonic oscillator
\[\psi = \frac{\sqrt[4]{\frac{m \omega}{\pi \hbar}}}{\sqrt{2^{N} N!}} \exp{\left(- \frac{m \omega}{2 \hbar} x^{2} \right)} H_{N}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)\]
(doc)
laws.quantum_mechanics.schrodinger
(doc) Free particle plane wave solution
\[\psi = \exp{\left(\frac{i}{\hbar} \left(p x - E t\right) \right)}\](doc) Time dependent Schrödinger equation in one dimension
\[- \frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi{\left(x,t \right)} + U{\left(x \right)} \psi{\left(x,t \right)} = i \hbar \frac{\partial}{\partial t} \psi{\left(x,t \right)}\](doc) Time dependent solution via time independent solution
\[\Psi{\left(x,t \right)} = \psi{\left(x \right)} \exp{\left(- \frac{i}{\hbar} E t \right)}\](doc) Time independent solution in one dimension
\[- \frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi{\left(x \right)} + U{\left(x \right)} \psi{\left(x \right)} = E \psi{\left(x \right)}\]
(doc)
laws.relativistic
(doc) Coordinate conversion at constant velocity
\[x_{2} = \frac{x_{1} - v t_{1}}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}\](doc) Lorentz transformation of time
\[t' = \frac{t - \frac{v x}{c^{2}}}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}\](doc) Proper time for timelike intervals
\[\Delta \tau = \frac{\Delta s}{c}\](doc) Relativistic kinetic energy
\[K = \left(\gamma - 1\right) m_{0} c^{2}\](doc) Relativistic length via rest length and speed
\[l = l_{0} \sqrt{1 - \frac{v^{2}}{c^{2}}}\](doc) Relativistic mass via rest mass and speed
\[m = \frac{m_{0}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}\](doc) Relativistic momentum via rest mass and speed
\[p = \frac{m_{0} v}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}\](doc) Relativistic sum of velocities
\[v_{OL} = \frac{v_{OP} + v_{PL}}{1 + \frac{v_{OP} v_{PL}}{c^{2}}}\](doc) Relativistic time dilation
\[t = \frac{\tau}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}\](doc) Spacetime interval via time and distance
\[s^{2} = \left(c t\right)^{2} - d^{2}\](doc) Spacetime interval is Lorentz invariant
\[s_{2} = s_{1}\](doc) Total energy via momentum and rest mass
\[E^{2} = \left(p c\right)^{2} + \left(m_{0} c^{2}\right)^{2}\](doc) Total energy via relativistic mass
\[E = m c^{2}\]
(doc)
laws.relativistic.vector
(doc) Acceleration from force and velocity
\[{\vec a} = \frac{{\vec F} - \frac{\left( {\vec F}, {\vec v} \right)}{c^{2}} {\vec v}}{m_{0} \gamma}\](doc) Force from acceleration and velocity
\[{\vec F} = \gamma^{3} m_{0} {\vec a}_\text{t} + \gamma m_{0} {\vec a}_\text{n}\](doc) Relativistic mass moment
\[{\vec N} = m_{0} \gamma^{2} \left({\vec r} - {\vec v} t\right)\](doc) Relativistic velocity normal to movement
\[{\vec u}_\text{n} = \frac{\left({\vec u'} - \frac{\left( {\vec u'}, {\vec v} \right)}{\left( {\vec v}, {\vec v} \right)} {\vec v}\right) \sqrt{1 - \frac{\left( {\vec v}, {\vec v} \right)}{c^{2}}}}{1 + \frac{\left( {\vec u'}, {\vec v} \right)}{c^{2}}}\](doc) Relativistic velocity tangential to movement
\[{\vec u}_\text{t} = \frac{{\vec v} \left(\frac{\left( {\vec u'}, {\vec v} \right)}{\left( {\vec v}, {\vec v} \right)} + 1\right)}{1 + \frac{\left( {\vec u'}, {\vec v} \right)}{c^{2}}}\]
(doc)
laws.thermodynamics
(doc) Average kinetic energy of ideal gas from temperature
\[\langle K \rangle = \frac{3 k_\text{B}}{2} T\](doc) Average speed in Maxwell—Boltzmann statistics
\[\langle v \rangle = \sqrt{\frac{8 k_\text{B} T}{\pi m}}\](doc) Average square speed in Maxwell—Boltzmann statistics
\[\langle v^{2} \rangle = \frac{3 k_\text{B} T}{m}\](doc) Canonical partition function of a classical discrete system
\[Z = \sum_i {f}_{i}\](doc) Change in entropy of ideal gas from volume and temperature
\[S = \frac{m}{M} \left(c_{V, \text{m}} \log \left( \frac{T_{1}}{T_{0}} \right) + R \log \left( \frac{V_{1}}{V_{0}} \right)\right)\](doc) Chemical potential is Gibbs energy per particle
\[\mu = \frac{G}{N}\](doc) Chemical potential is particle count derivative of enthalpy
\[\mu = \frac{\partial}{\partial N} H{\left(S,p,N \right)}\](doc) Chemical potential is particle count derivative of free energy
\[\mu = \frac{\partial}{\partial N} F{\left(T,V,N \right)}\](doc) Chemical potential is particle count derivative of Gibbs energy
\[\mu = \frac{\partial}{\partial N} G{\left(T,p,N \right)}\](doc) Chemical potential is particle count derivative of internal energy
\[\mu = \frac{\partial}{\partial N} U{\left(S,V,N \right)}\](doc) Chemical potential of ideal gas
\[\mu = k_\text{B} T \log \left( n \lambda^{3} \right)\](doc) Classical isochoric molar heat capacity of solids
\[c_{p, \text{m}} = 3 R\](doc) Compressibility factor via intermolecular force potential
\[Z = 1 + \frac{2 \pi N}{V} \int\limits_{0}^{\infty} \left(1 - \exp{\left(- \frac{U{\left(r \right)}}{k_\text{B} T} \right)}\right) r^{2}\, dr\](doc) Diffusion coefficient of spherical Brownian particles from temperature and dynamic viscosity
\[D = \frac{R T}{6 N_\text{A} \pi r \mu}\](doc) Diffusion flux from diffusion coefficient and concentration gradient
\[J{\left(x \right)} = - D \frac{d}{d x} c{\left(x \right)}\](doc) Dynamic viscosity from temperature
\[\mu = \mu_{0} \frac{T_{0} + S}{T + S} \left(\frac{T}{T_{0}}\right)^{\frac{3}{2}}\](doc) Efficiency of heat engine
\[\eta = 1 - \frac{Q_{r}}{Q_{h}}\](doc) Enthalpy derivative via volume derivative
\[\frac{\partial}{\partial p} H{\left(T,p \right)} = V{\left(T,p \right)} - T \frac{\partial}{\partial T} V{\left(T,p \right)}\](doc) Enthalpy differential
\[dH = T dS + V dp + \mu dN\](doc) Enthalpy is internal energy plus pressure energy
\[H = U + p V\](doc) Enthalpy via Gibbs energy
\[H = G{\left(T,p \right)} - T \frac{\partial}{\partial T} G{\left(T,p \right)}\](doc) Entropy change in reversible process
\[d S = \frac{\delta Q}{T}\](doc) Entropy derivative via volume derivative
\[\frac{\partial}{\partial p} S{\left(T,p \right)} = - \frac{\partial}{\partial T} V{\left(T,p \right)}\](doc) Entropy from statistical weight
\[S = k_\text{B} \log \left( \Omega \right)\](doc) Entropy is derivative of free energy
\[S = - \frac{\partial}{\partial T} F{\left(T,V,N \right)}\](doc) Entropy is derivative of Gibbs energy
\[S = - \frac{\partial}{\partial T} G{\left(T,p,N \right)}\](doc) Entropy of independent subsystems is sum of their entropies
\[S = \sum_i {S}_{i}\](doc) Fractional volume change via small temperature change
\[e_{V} = \alpha_{V} \Delta T\](doc) Free energy differential
\[dF = - S dT - p dV + \mu dN\](doc) Gas mixture pressure from partial pressures
\[p = \sum_i {p}_{i}\](doc) Gas pressure change from temperature
\[\Delta p = p_{0} \left(\frac{T}{T_\text{std}} - 1\right)\](doc) Gibbs energy differential
\[dG = - S dT + V dp + \mu dN\](doc) Gibbs energy via enthalpy
\[G = H - T S\](doc) Grashof number
\[\text{Gr} = \frac{g \alpha_{V} \left(T_\text{s} - T_\text{b}\right) l_\text{c}^{3}}{\nu^{2}}\](doc) Heat is heat capacity times temperature change
\[Q = C \Delta T\](doc) Heat of combustion via mass
\[Q = \varepsilon_{q} m\](doc) Heat of vaporization via mass
\[Q = \varepsilon_{L} m\](doc) Helmholtz free energy via internal energy
\[F = U - T S\](doc) Infinitesimal work in quasistatic process
\[\delta W = p d V\](doc) Intensive parameters relation
\[S d T - V d p + N d \mu = 0\](doc) Internal energy change of ideal gas via temperature
\[dU = C_{V} dT\](doc) Internal energy change via heat and work
\[d U = \delta Q - \delta W\](doc) Internal energy differential
\[d U = T d S - p d V + \mu d N\](doc) Internal energy of ideal gas via temperature
\[U = \frac{3 m R T}{2 M}\](doc) Internal energy via Helmholtz free energy
\[U = F{\left(T,V \right)} - T \frac{\partial}{\partial T} F{\left(T,V \right)}\](doc) Isentropic speed of sound via pressure derivative
\[v_\text{s} = \sqrt{\frac{\partial}{\partial \rho} p{\left(\rho,S \right)}}\](doc) Isobaric molar heat capacity of ideal gas via adiabatic index
\[c_{p, \text{m}} = \frac{R \gamma}{\gamma - 1}\](doc) Isobaric potential from heat capacity
\[\Delta G_\text{m} = \Delta H_\text{m} - T \Delta S_\text{m} - \Delta c_\text{m} T \left(\log \left( \frac{T}{T_\text{lab}} \right) + \frac{T_\text{lab}}{T} - 1\right)\](doc) Isobaric potential of temperature dependent heat capacity
\[\Delta G_\text{m} = \Delta H_\text{m} - T S_\text{m} - T \left(a \left(\log \left( \frac{T_\text{lab}}{T} \right) + \frac{T_\text{lab}}{T} - 1\right) + b \left(\frac{T}{2} + \frac{T_\text{lab}^{2}}{2 T} - T_\text{lab}\right) + c \left(\frac{1}{T^{2} \cdot 2} - \frac{1}{T_\text{lab} T} + \frac{1}{T_\text{lab}^{2} \cdot 2}\right)\right)\](doc) Isochoric and isobaric heat capacities of homogeneous substance
\[C_{p} - C_{V} = \frac{V T \alpha_{V}^{2}}{\beta_{T}}\](doc) Isochoric and isobaric heat capacities of ideal gas
\[C_{p} - C_{V} = n R\](doc) Isochoric molar heat capacity of ideal gas via adiabatic index
\[c_{V, \text{m}} = \frac{R}{\gamma - 1}\](doc) Isochoric molar heat capacity of ideal gas via degrees of freedom
\[c_{V, \text{m}} = \frac{f}{2} R\](doc) Laplace pressure of spherical shapes
\[P_\text{L} = \frac{2 \gamma}{r}\](doc) Latent heat of fusion via mass
\[Q = \varepsilon_{\lambda} m\](doc) Mean free path of random motion
\[\lambda = \frac{1}{\sqrt{2} \pi D^{2} n}\](doc) Number of impacts on the wall from area and speed
\[N = \frac{n A v t}{2}\](doc) Prandtl number via dynamic viscosity and thermal conductivity
\[\text{Pr} = \frac{c_{p} \mu}{k}\](doc) Pressure and temperature in isochoric process
\[\frac{p_{0}}{p_{1}} = \frac{T_{0}}{T_{1}}\](doc) Pressure and volume in isothermal process
\[p_{0} V_{0} = p_{1} V_{1}\](doc) Pressure from number density and kinetic energy
\[p = \frac{2 n}{3} \langle K \rangle\](doc) Pressure of ideal gas from height and temperature
\[p = p_{0} \exp{\left(- \frac{g m \Delta h}{k_\text{B} T} \right)}\](doc) Probability of finding ideal gas molecules in volume
\[P = \left(\frac{V}{V_{0}}\right)^{N}\](doc) Probability of ideal gas macrostate
\[P_\text{macro} = \Omega \prod_i {P}_{i}^{{N}_{i}}\](doc) Quantum isochoric molar heat capacity of solids
\[c_{V, \text{m}} = 3 R \frac{x^{2} \exp{\left(x \right)}}{\left(\exp{\left(x \right)} - 1\right)^{2}}\](doc) Radiance of black body from temperature
\[M_\text{e} = \sigma T^{4}\](doc) Radiation power via temperature
\[P = \sigma \varepsilon A T^{4}\](doc) Rate of energy conduction through slab
\[P = \frac{k A \left|{\Delta T}\right|}{h}\](doc) Relative humidity is ratio of vapor pressure
\[\varphi = \frac{p}{p_\text{s}}\](doc) Speed of sound in ideal gas
\[v_\text{s} = \sqrt{\frac{\gamma R T}{M}}\](doc) Temperature derivative via volume derivative
\[\frac{\partial}{\partial p} T{\left(p,H \right)} = \frac{T{\left(p,H \right)} \frac{\partial}{\partial T{\left(p,H \right)}} V{\left(T{\left(p,H \right)},p \right)} - V{\left(T{\left(p,H \right)},p \right)}}{C_{p}}\](doc) Temperature is derivative of internal energy
\[T = \frac{\partial}{\partial S} U{\left(S,V,N \right)}\](doc) Total energy transfer is zero in adiabatically isolated system
\[\sum_i {E}_{i} = 0\](doc) Total particle count is sum of occupancies
\[N = \sum_i {N}_{i}\](doc) Volume and temperature in isobaric process
\[\frac{V_{0}}{V_{1}} = \frac{T_{0}}{T_{1}}\](doc) Volumetric and linear expansion coefficients in isotropic materials
\[\alpha_{V} = 3 \alpha_{l}\](doc) Volumetric expansion coefficient of ideal gas
\[\alpha_{V} = \frac{1}{T}\](doc) Work is integral of pressure over volume
\[W = \int\limits_{V_{0}}^{V_{1}} p{\left(V \right)}\, dV\](doc) Work of ideal gas in isobaric process
\[W = p \left(V_{1} - V_{0}\right)\](doc) Work of ideal gas in isothermal process
\[W = n R T \log \left( \frac{V_{1}}{V_{0}} \right)\]
(doc)
laws.thermodynamics.bose_einstein_statistics
(doc) Single particle state distribution
\[n_{i} = \frac{1}{\exp{\left(\frac{E_{i} - \mu}{k_\text{B} T} \right)} - 1}\]
(doc)
laws.thermodynamics.dielectrics
(doc) Enthalpy change via entropy change and electric field change
\[dH = T dS - D dE\](doc) Enthalpy of dielectrics
\[H = U - E D\](doc) Free energy change via temperature change and electric displacement change
\[dH = - S dT + E dD\](doc) Gibbs energy change via temperature change and electric displacement change
\[dG = - S dT - D dE\](doc) Gibbs energy of dielectrics
\[G = F - E D\](doc) Internal energy change via heat and electric displacement change
\[dU = \delta Q + E dD\]
(doc)
laws.thermodynamics.equations_of_state
(doc)
laws.thermodynamics.equations_of_state.van_der_waals
(doc) Critical molar volume
\[v_{\text{c},\text{m}} = 3 b\](doc) Critical pressure
\[p_\text{c} = \frac{a}{27 b^{2}}\](doc) Critical temperature
\[T_\text{c} = \frac{8 a}{27 R b}\](doc) Dimensionless equation
\[\left(p_{r} + \frac{3}{V_{r}^{2}}\right) \left(V_{r} - \frac{1}{3}\right) = \frac{8 T_{r}}{3}\](doc) Molar internal energy
\[u_\text{m} = \int c_{V, \text{m}}{\left(T \right)}\, dT - \frac{a}{v_\text{m}}\](doc) Reduced pressure
\[p_{r} = \frac{p}{p_\text{c}}\](doc) Reduced temperature
\[T_{r} = \frac{T}{T_\text{c}}\](doc) Reduced volume
\[V_{r} = \frac{V}{V_\text{c}}\](doc) Second virial coefficient
\[C_{2} = b - \frac{a}{R T}\](doc) Van der Waals equation
\[\left(p + \frac{a}{v_\text{m}^{2}}\right) \left(v_\text{m} - b\right) = R T\]
(doc)
laws.thermodynamics.euler_relations
(doc)
laws.thermodynamics.fermi_dirac_statistics
(doc) Single-particle state distribution
\[N_{i} = \frac{1}{\exp{\left(\frac{E_{i} - \mu}{k_\text{B} T} \right)} + 1}\]
(doc)
laws.thermodynamics.heat_transfer
(doc) Equation in homogeneous medium in one dimension
\[\frac{\partial}{\partial t} T{\left(x,t \right)} = \alpha \frac{\partial^{2}}{\partial x^{2}} T{\left(x,t \right)}\](doc) General heat equation in 3D
\[\rho c_{p} \frac{\partial}{\partial t} T{\left({\vec r},t \right)} = \text{div} \, k{\left({\vec r} \right)} \text{grad} \, T{\left({\vec r},t \right)} + q{\left({\vec r} \right)}\](doc) General equation in one dimension
\[\rho c_{p} \frac{\partial}{\partial t} T{\left(x,t \right)} = \frac{\partial}{\partial x} k{\left(x \right)} \frac{\partial}{\partial x} T{\left(x,t \right)} + q{\left(x,t \right)}\](doc) Solution with zero temperature boundaries
\[T_{n} = B_{n} \sin{\left(\frac{N \pi x}{x_\text{max}} \right)} \exp{\left(- \alpha \left(\frac{N \pi}{x_\text{max}}\right)^{2} t \right)}\]
(doc)
laws.thermodynamics.maxwell_boltzmann_statistics
(doc) Energy distribution
\[f(E) = \frac{2 \sqrt{\frac{E}{\pi}}}{T^{\frac{3}{2}} k_\text{B}^{\frac{3}{2}}} \exp{\left(- \frac{E}{k_\text{B} T} \right)}\](doc) Most probable speed
\[v_\text{prob} = \sqrt{\frac{2 k_\text{B} T}{m}}\](doc) Single-particle discrete distribution
\[N_{i} = \frac{N}{Z} \exp{\left(- \frac{E_{i}}{k_\text{B} T} \right)}\](doc) Speed distribution
\[f(v) = \sqrt{\frac{2}{\pi}} \left(\frac{m}{k_\text{B} T}\right)^{\frac{3}{2}} v^{2} \exp{\left(- \frac{m v^{2}}{2 k_\text{B} T} \right)}\](doc) Statistical weight of macrostate
\[\Omega = \sum_i {N}_{i}! \prod_i {N}_{i}!^{-1}\](doc) Velocity component distribution
\[f(v_{k)} = \sqrt{\frac{m}{2 \pi k_\text{B} T}} \exp{\left(- \frac{m v_{k}^{2}}{2 k_\text{B} T} \right)}\]
(doc)
laws.thermodynamics.relativistic
(doc) Reduced temperature in Maxwell—Jüttner statistics
\[\theta = \frac{k_\text{B} T}{m c^{2}}\]
(doc)
laws.waves
(doc) Average power of sinusoidal wave on stretched string
\[P = \frac{\mu v \omega^{2} u_\text{max}^{2}}{2}\](doc) Displacement in interfering waves
\[u = 2 u_\text{max} \cos \left( \frac{\varphi}{2} \right) \sin \left( k x - \omega t + \frac{\varphi}{2} \right)\](doc) Displacement in standing wave
\[u = 2 u_\text{max} \sin(k x) \cos(\omega t)\](doc) Frequency shift from speed in arbitrary motion
\[f_\text{o} = \frac{f_\text{s} \left(v - v_\text{o} \cos{\left(\theta_\text{o} \right)}\right)}{v - v_\text{s} \cos{\left(\theta_\text{s} \right)}}\](doc) Frequency shift from speed in collinear motion
\[f_\text{o} = \frac{f_\text{s} \left(v - v_\text{o}\right)}{v + v_\text{s}}\](doc) Fully constructive interference condition
\[\varphi = 2 \pi N\](doc) Fully destructive interference condition
\[\varphi = \left(1 + 2 N\right) \pi\](doc) Group velocity from dispersion relation
\[v_\text{g} = \frac{d}{d k} \omega{\left(k \right)}\](doc) Intensity of sound wave via displacement amplitude
\[I = \frac{\rho v \omega^{2} s_\text{max}^{2}}{2}\](doc) Light frequency change is proportional to gravitational potential change
\[\frac{df}{f} = - \frac{d \phi}{c^{2}}\](doc) Peak wavelength via temperature
\[\lambda_\text{peak} = \frac{b}{T}\](doc) Phase of traveling wave
\[\varphi = k x - \omega t\](doc) Phase shift between two points
\[\varphi = \frac{2 \pi d}{\lambda}\](doc) Phase speed of wave on stretched string
\[v = \sqrt{\frac{T}{\mu}}\](doc) Phase speed from angular frequency and wavenumber
\[v = \frac{\omega}{k}\](doc) Photoelectron energy from photon energy
\[K_\text{max} = E - W\](doc) Photon energy is proportional to angular frequency
\[E = \hbar \omega\](doc) Photon energy is proportional to linear frequency
\[E = h f\](doc) Photon momentum is proportional to angular wavenumber
\[p = \hbar k\](doc) Photon momentum is proportional to energy
\[p = \frac{E}{c}\](doc) Position of antinodes in standing wave
\[x = \frac{\left(N + \frac{1}{2}\right) \lambda}{2}\](doc) Position of nodes in standing wave
\[x = \frac{N \lambda}{2}\](doc) Pressure amplitude in sound wave
\[(\Delta p)_\text{max} = v \rho \omega s_\text{max}\](doc) Refractive index via permittivity and permeability
\[n = \sqrt{\varepsilon_\text{r} \mu_\text{r}}\](doc) Resonant frequencies of stretched string with fixed ends
\[f = \frac{N v}{2 l}\](doc) Sine of Mach cone angle via Mach number
\[\sin{\left(\varphi \right)} = \frac{1}{\text{M}}\](doc) Speed of light via vacuum permittivity and permeability
\[c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}\](doc) Speed of sound via bulk modulus and density
\[v = \sqrt{\frac{K}{\rho}}\](doc) General solution to wave equation in one dimension
\[u = f{\left(\varphi \right)}\](doc) Wavelength from phase speed and period
\[\lambda = v T\](doc) Wavelength of standing wave in string with fixed ends
\[\frac{N \lambda}{2} = l\](doc) Wave speed from medium permittivity and permeability
\[v = \frac{c}{\sqrt{\varepsilon_\text{r} \mu_\text{r}}}\](doc) Wave speed from medium
\[v = \frac{c}{n}\]
(doc)
laws.waves.blackbody_radiation
(doc) Spectral energy density at all frequencies
\[w_{f} = \frac{8 \pi h f^{3}}{c^{3}} \frac{1}{\exp{\left(\frac{h f}{k_\text{B} T} \right)} - 1}\](doc) Spectral energy density at high frequency limit
\[w_{f} = \frac{8 \pi h f^{3}}{c^{3}} \exp{\left(- \frac{h f}{k_\text{B} T} \right)}\](doc) Spectral energy density at low frequency limit
\[w_{f} = \frac{8 \pi f^{2} k_\text{B} T}{c^{3}}\]
(doc)
laws.waves.relativistic
(doc) Frequency shift from speed and angle
\[f_\text{o} = \frac{f_\text{s} \sqrt{c^{2} - v^{2}}}{c - v \cos{\left(\varphi \right)}}\](doc) Longitudinal frequency shift from speeds
\[f_\text{o} = \frac{f_\text{s} \left(1 - \frac{v_\text{o}}{v}\right)}{1 + \frac{v_\text{s}}{v}} \sqrt{\frac{1 - \left(\frac{v_\text{s}}{c}\right)^{2}}{1 - \left(\frac{v_\text{o}}{c}\right)^{2}}}\](doc) Longitudinal frequency shift from speed
\[f_\text{o} = f_\text{s} \sqrt{\frac{c - v}{c + v}}\]