Rotational inertia in terms of Cartesian integral¶
In case of a rigid body with a continuously distributed mass, its rotational inertia is expressed as a volume integral over the entire body, i.e. a triple integral over \(x, y, z\) in Cartesian coordinates.
Notes:
The integration is carried out over the entire body as to include every volume element.
Links:
- rotational_inertia¶
- Symbol:
I
- Latex:
\(I\)
- Dimension:
length**2*mass
- Symbol:
x
- Latex:
\(x\)
- Dimension:
length
- x_start¶
Initial position on the \(x\) axis.
- Symbol:
x_0
- Latex:
\(x_{0}\)
- Dimension:
length
- x_end¶
Final position on the \(x\) axis.
- Symbol:
x_1
- Latex:
\(x_{1}\)
- Dimension:
length
- Symbol:
y
- Latex:
\(y\)
- Dimension:
length
- y_start¶
Initial position on the \(y\) axis.
- Symbol:
y_0
- Latex:
\(y_{0}\)
- Dimension:
length
- y_end¶
Final position on the \(y\) axis.
- Symbol:
y_1
- Latex:
\(y_{1}\)
- Dimension:
length
- Symbol:
z
- Latex:
\(z\)
- Dimension:
length
- z_start¶
Initial position on the \(z\) axis.
- Symbol:
z_0
- Latex:
\(z_{0}\)
- Dimension:
length
- z_end¶
Final position on the \(z\) axis.
- Symbol:
z_1
- Latex:
\(z_{1}\)
- Dimension:
length
- Symbol:
rho(x, y, z)
- Latex:
\(\rho{\left(x,y,z \right)}\)
- Dimension:
mass/volume
- distance_to_axis¶
distance_to_axis
as a function ofx
,y
,z
.
- Symbol:
r(x, y, z)
- Latex:
\(r{\left(x,y,z \right)}\)
- Dimension:
length
- law¶
I = Integral(rho(x, y, z) * r(x, y, z)^2, (x, x_0, x_1), (y, y_0, y_1), (z, z_0, z_1))
- Latex:
- \[I = \int\limits_{z_{0}}^{z_{1}}\int\limits_{y_{0}}^{y_{1}}\int\limits_{x_{0}}^{x_{1}} \rho{\left(x,y,z \right)} r^{2}{\left(x,y,z \right)}\, dx\, dy\, dz\]