Neutron flux for uniform parallelepiped

Neutron flux for a uniform rectangular parallelepiped reactor of side lengths \(a, b, c\) depends on the cartesian coordinates \(x, y, z\).

dimension_factor

Dimension factor that appears as a coefficient in the solution to the differential equation. See neutron_flux.

Symbol:

Phi_0

Latex:

\(\Phi_{0}\)

Dimension:

1/(area*time)

x

position along the \(x\)-axis.

Symbol:

x_1

Latex:

\(x_{1}\)

Dimension:

length

y

position along the \(y\)-axis.

Symbol:

x_2

Latex:

\(x_{2}\)

Dimension:

length

z

position along the \(z\)-axis.

Symbol:

x_3

Latex:

\(x_{3}\)

Dimension:

length

length

length along the \(x\)-axis.

Symbol:

l_1

Latex:

\(l_{1}\)

Dimension:

length

width

length along the \(y\)-axis.

Symbol:

l_2

Latex:

\(l_{2}\)

Dimension:

length

height

length along the \(z\)-axis.

Symbol:

l_3

Latex:

\(l_{3}\)

Dimension:

length

neutron_flux

neutron_flux at a point with coordinates x, y, z.

Symbol:

Phi

Latex:

\(\Phi\)

Dimension:

1/(area*time)

law

Phi = Phi_0 * cos(pi / l_2 * x_1) * cos(pi / l_1 * x_2) * cos(pi / l_3 * x_3)

Latex:
\[\Phi = \Phi_{0} \cos{\left(\frac{\pi}{l_{2}} x_{1} \right)} \cos{\left(\frac{\pi}{l_{1}} x_{2} \right)} \cos{\left(\frac{\pi}{l_{3}} x_{3} \right)}\]