Wave impedance in rectangular waveguide for transverse electric waves

A rectangular waveguide is a rectangular metal waveguide capable of supporting waves propagating along it. The impedance of the wave traveling in the guide is a function of the

Conditions:

  1. Waves propagating in the waveguide must be transverse electric waves.

Links:

  1. Wikipedia, first link.

wave_impedance

wave_impedance in the waveguide.

Symbol:

eta

Latex:

\(\eta\)

Dimension:

impedance

medium_impedance

wave_impedance of the medium filling the waveguide.

Symbol:

eta_0

Latex:

\(\eta_{0}\)

Dimension:

impedance

vacuum_wavelength

wavelength of the signal in vacuum.

Symbol:

lambda

Latex:

\(\lambda\)

Dimension:

length

critical_wavelength

Critical wavelength. See Critical wavelength of waveguide.

Symbol:

lambda_c

Latex:

\(\lambda_\text{c}\)

Dimension:

length

law

eta = eta_0 / sqrt(1 - (lambda / lambda_c)^2)

Latex:
\[\eta = \frac{\eta_{0}}{\sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}}\]