Wave impedance of coplanar line when hyperbolic sine ratio squared is between \(0\) and \(\frac{1}{2}\)¶
Under the conditions described below, the wave impedance of a coplanar line depends on its effective permittivity and physical dimensions.
Conditions:
\(h < \frac{d}{4}\)
\(0 < \left( \frac{\sinh{ \left((\pi l) / (4 h)\right) }}{\sinh{ \left((\pi d) / (4 h)\right) }} \right)^2 \le \frac{1}{2}\)
See below for symbol descriptions.
- wave_impedance¶
wave_impedance
of the coplanar line.
- Symbol:
eta
- Latex:
\(\eta\)
- Dimension:
impedance
- effective_permittivity¶
Effective
relative_permittivity
of the coplanar line. See Effective permittivity of coplanar line.
- Symbol:
epsilon_eff
- Latex:
\(\varepsilon_\text{eff}\)
- Dimension:
dimensionless
- electrode_distance¶
euclidean_distance
between the first and last electrodes.
- Symbol:
d
- Latex:
\(d\)
- Dimension:
length
- Symbol:
l
- Latex:
\(l\)
- Dimension:
length
- resistance_constant¶
Constant equal to \(30 \, \Omega\) (
30 Ohm
).
- Symbol:
R_0
- Latex:
\(R_0\)
- Dimension:
impedance
- law¶
eta = R_0 / sqrt(epsilon_eff) * log(2 * (1 + (1 - (l / d)^2)^(1 / 4)) / (1 - (1 - (l / d)^2)^(1 / 4)))
- Latex:
- \[\eta = \frac{R_0}{\sqrt{\varepsilon_\text{eff}}} \log \left( \frac{2 \left(1 + \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}\right)}{1 - \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}} \right)\]