Entropy is derivative of free energy¶
Entropy of a system can be found if its free energy is known as a function of temperature.
Links:
- Symbol:
S- Latex:
\(S\)
- Dimension:
energy/temperature
- temperature¶
temperatureof the system.
- Symbol:
T- Latex:
\(T\)
- Dimension:
temperature
- Symbol:
V- Latex:
\(V\)
- Dimension:
volume
- particle_count¶
particle_countof the system.
- Symbol:
N- Latex:
\(N\)
- Dimension:
dimensionless
- free_energy¶
helmholtz_free_energyof the system as a function oftemperature,volume, andparticle_count.
- Symbol:
F(T, V, N)- Latex:
\(F{\left(T,V,N \right)}\)
- Dimension:
energy
- law¶
S = -Derivative(F(T, V, N), T)- Latex:
- \[S = - \frac{\partial}{\partial T} F{\left(T,V,N \right)}\]