Enthalpy derivative via volume derivative¶
Isothermal derivative of enthalpy w.r.t. pressure can be found using volume as a function of temperature and pressure.
Conditions:
Works for an infinitesimal quasi-static isothermal process.
Links:
- temperature¶
temperature
of the system.
- Symbol:
T
- Latex:
\(T\)
- Dimension:
temperature
- Symbol:
p
- Latex:
\(p\)
- Dimension:
pressure
- Symbol:
H(T, p)
- Latex:
\(H{\left(T,p \right)}\)
- Dimension:
energy
- Symbol:
V(T, p)
- Latex:
\(V{\left(T,p \right)}\)
- Dimension:
volume
- law¶
Derivative(H(T, p), p) = V(T, p) - T * Derivative(V(T, p), T)
- Latex:
- \[\frac{\partial}{\partial p} H{\left(T,p \right)} = V{\left(T,p \right)} - T \frac{\partial}{\partial T} V{\left(T,p \right)}\]