Enthalpy derivative via volume derivative

Isothermal derivative of enthalpy w.r.t. pressure can be found using volume as a function of temperature and pressure.

Conditions:

  1. Works for an infinitesimal quasi-static isothermal process.

Links:

  1. Wikipedia, see third table.

temperature

temperature of the system.

Symbol:

T

Latex:

\(T\)

Dimension:

temperature

pressure

pressure inside the system.

Symbol:

p

Latex:

\(p\)

Dimension:

pressure

enthalpy

enthalpy of the system.

Symbol:

H(T, p)

Latex:

\(H{\left(T,p \right)}\)

Dimension:

energy

volume

volume of the system.

Symbol:

V(T, p)

Latex:

\(V{\left(T,p \right)}\)

Dimension:

volume

law

Derivative(H(T, p), p) = V(T, p) - T * Derivative(V(T, p), T)

Latex:
\[\frac{\partial}{\partial p} H{\left(T,p \right)} = V{\left(T,p \right)} - T \frac{\partial}{\partial T} V{\left(T,p \right)}\]