Diffusion equation from neutron flux¶
The diffusion equation, based on Fick’s law, provides an analytical solution of spatial neutron flux distribution in the multiplying system.
Links:
- diffusion_coefficient¶
- Symbol:
D- Latex:
\(D\)
- Dimension:
length
- macroscopic_fission_cross_section¶
macroscopic_cross_sectionof fission.
- Symbol:
Sigma_f- Latex:
\(\Sigma_\text{f}\)
- Dimension:
1/length
- macroscopic_absorption_cross_section¶
macroscopic_cross_sectionof absorption.
- Symbol:
Sigma_a- Latex:
\(\Sigma_\text{a}\)
- Dimension:
1/length
- effective_multiplication_factor¶
- Symbol:
k_eff- Latex:
\(k_\text{eff}\)
- Dimension:
dimensionless
- Symbol:
x- Latex:
\(x\)
- Dimension:
length
- neutron_flux¶
neutron_fluxas a function ofposition.
- Symbol:
Phi(x)- Latex:
\(\Phi{\left(x \right)}\)
- Dimension:
1/(area*time)
- neutron_flux_laplacian¶
Laplacian of the
neutron_fluxas a function ofposition.
- Symbol:
Laplace(Phi)(x)- Latex:
\(\nabla^{2} \Phi{\left(x \right)}\)
- Dimension:
1/(length**4*time)
- law¶
-D * Laplace(Phi)(x) + Sigma_a * Phi(x) = nu / k_eff * Sigma_f * Phi(x)- Latex:
- \[- D \nabla^{2} \Phi{\left(x \right)} + \Sigma_\text{a} \Phi{\left(x \right)} = \frac{\nu}{k_\text{eff}} \Sigma_\text{f} \Phi{\left(x \right)}\]