Centripetal acceleration via vector rejection¶
Centripetal acceleration is the acceleration of a body in a rotating coordinate system which is directed towards the axis of rotation.
Also see Centripetal acceleration via cross product.
Notation:
\(|\vec a|\) (
norm(a)
) is the Euclidean norm of \(\vec a\).\(\text{oproj}_{\vec b} \vec a\) (
reject(a, b)
) is the rejection of \(\vec a\) from \(\vec b\), i.e. the component of \(\vec a\) orthogonal to \(\vec b\).
Links:
- centripetal_acceleration_law(angular_velocity_, radius_vector_)[source]¶
Centripetal acceleration via angular velocity and radius vector.
- Law:
a_c = -1 * norm(w)^2 * reject(r, w)
- Latex:
- \[{\vec a}_\text{c} = - |\vec \omega|^2 \text{oproj}_{\vec \omega} \vec r\]
- Parameters:
angular_velocity_ –
pseudovector of angular velocity
Symbol:
w
Latex: \(\vec \omega\)
Dimension: angle / time
radius_vector_ –
radius vector, or position vector
Symbol:
r
Latex: \(\vec r\)
Dimension: length
- Returns:
vector of centripetal acceleration
Symbol:
a_c
Latex: \({\vec a}_\text{c}\)
Dimension: acceleration