Centripetal acceleration via vector rejection¶
Centripetal acceleration is the acceleration of a body in a rotating coordinate system which is directed towards the axis of rotation.
Also see Centripetal acceleration via cross product.
Notation:
\(\left( \vec a, \vec b \right)\) (
dot(a, b)) is the dot product between vectors \(\vec a\) and \(\vec b\).
Links:
- centripetal_acceleration¶
Vector of the body’s centripetal
acceleration.
- Symbol:
a_cp- Latex:
\({\vec a}_\text{cp}\)
- Dimension:
acceleration
- angular_velocity¶
Pseudovector of the angular velocity of the body’s rotation. See
angular_speed.
- Symbol:
w- Latex:
\({\vec \omega}\)
- Dimension:
angle/time
- position_vector¶
The body’s position vector. See
distance_to_origin.
- Symbol:
r- Latex:
\({\vec r}\)
- Dimension:
length
- law¶
a_cp = w * dot(r, w) - r * dot(w, w)- Latex:
- \[{\vec a}_\text{cp} = {\vec \omega} \left( {\vec r}, {\vec \omega} \right) - {\vec r} \left( {\vec \omega}, {\vec \omega} \right)\]