Centripetal acceleration via vector rejection

Centripetal acceleration is the acceleration of a body in a rotating coordinate system which is directed towards the axis of rotation.

Also see Centripetal acceleration via cross product.

Notation:

  1. \(\left( \vec a, \vec b \right)\) (dot(a, b)) is the dot product between vectors \(\vec a\) and \(\vec b\).

Links:

  1. Wikipedia.

centripetal_acceleration

Vector of the body’s centripetal acceleration.

Symbol:

a_cp

Latex:

\({\vec a}_\text{cp}\)

Dimension:

acceleration

angular_velocity

Pseudovector of the angular velocity of the body’s rotation. See angular_speed.

Symbol:

w

Latex:

\({\vec \omega}\)

Dimension:

angle/time

position_vector

The body’s position vector. See distance_to_origin.

Symbol:

r

Latex:

\({\vec r}\)

Dimension:

length

law

a_cp = w * dot(r, w) - r * dot(w, w)

Latex:
\[{\vec a}_\text{cp} = {\vec \omega} \left( {\vec r}, {\vec \omega} \right) - {\vec r} \left( {\vec \omega}, {\vec \omega} \right)\]