Rotational inertia in terms of a cylindrical integral¶
In case of a rigid body with a continuously distributed mass, its rotational inertia is expressed as a volume integral over the entire body, i.e. a triple integral over space coordinates.
Notes:
The integration is carried out over the entire body as to include every volume element.
Conditions:
The \(z\)-axis is the rotational axis of the body.
Links:
- rotational_inertia¶
rotational_inertiaof the body.
- Symbol:
I- Latex:
\(I\)
- Dimension:
length**2*mass
- Symbol:
r- Latex:
\(r\)
- Dimension:
length
- Symbol:
r_0- Latex:
\(r_{0}\)
- Dimension:
length
- Symbol:
r_1- Latex:
\(r_{1}\)
- Dimension:
length
- Symbol:
phi- Latex:
\(\varphi\)
- Dimension:
angle
- Symbol:
phi_0- Latex:
\(\varphi_{0}\)
- Dimension:
angle
- Symbol:
phi_1- Latex:
\(\varphi_{1}\)
- Dimension:
angle
- Symbol:
h- Latex:
\(h\)
- Dimension:
length
- Symbol:
h_0- Latex:
\(h_{0}\)
- Dimension:
length
- Symbol:
h_1- Latex:
\(h_{1}\)
- Dimension:
length
- density¶
densityas a function ofradius,polar_angle, andheight.
- Symbol:
rho(r, phi, h)- Latex:
\(\rho{\left(r,\varphi,h \right)}\)
- Dimension:
mass/volume
- law¶
I = Integral(rho(r, phi, h) * r^3, (r, r_0, r_1), (phi, phi_0, phi_1), (h, h_0, h_1))- Latex:
- \[I = \int\limits_{h_{0}}^{h_{1}}\int\limits_{\varphi_{0}}^{\varphi_{1}}\int\limits_{r_{0}}^{r_{1}} \rho{\left(r,\varphi,h \right)} r^{3}\, dr\, d\varphi\, dh\]