Gibbs energy change via temperature change and electric displacement change¶
The infinitesimal change in Gibbs energy of a system with a dielectric medium can be expressed using the change in temperature and the change in electric field strength.
Conditions:
The dielectric is isotropic whether or not the electric field is present.
The medium is homogeneous.
The volume change of the medium is insignificant.
Links:
Formula 31.8 on p. 122 of “General Course of Physics” (Obschiy kurs fiziki), vol. 3 by Sivukhin D.V. (1979).
- gibbs_energy_density_change¶
Infinitesimal change in
gibbs_energy
of the system per unitvolume
.- Symbol:
dG
- Latex:
\(dG\)
- Dimension:
energy/volume
- entropy_density¶
entropy
of the system per unitvolume
.- Symbol:
S
- Latex:
\(S\)
- Dimension:
energy/(temperature*volume)
- temperature_change¶
Infinitesimal change in
temperature
of the system.- Symbol:
dT
- Latex:
\(dT\)
- Dimension:
temperature
- electric_displacement¶
-
- Symbol:
D
- Latex:
\(D\)
- Dimension:
charge/area
- electric_field_change¶
Infinitesimal change in
electric_field_strength
.- Symbol:
dE
- Latex:
\(dE\)
- Dimension:
voltage/length
- law¶
dG = -S * dT - D * dE
- Latex:
- \[dG = - S dT - D dE\]