Acceleration from force and velocity¶
In special relativity, the Newton’s second law does not hold in the classical form \(\vec F = m \vec a\), but acceleration can still be expressed via force and velocity.
Notation:
\(c\) (
c
) isspeed_of_light
.
Conditions:
This law applies to special relativity.
Links:
- acceleration¶
Vector of the body’s
acceleration
.
- Symbol:
a
- Latex:
\({\vec a}\)
- Dimension:
acceleration
- Symbol:
m_0
- Latex:
\(m_{0}\)
- Dimension:
mass
- Symbol:
F
- Latex:
\({\vec F}\)
- Dimension:
force
- Symbol:
v
- Latex:
\({\vec v}\)
- Dimension:
velocity
- lorentz_factor¶
- Symbol:
gamma
- Latex:
\(\gamma\)
- Dimension:
dimensionless
- law¶
a = (F - dot(F, v) / c^2 * v) / (m_0 * gamma)
- Latex:
- \[{\vec a} = \frac{{\vec F} - \frac{\left( {\vec F}, {\vec v} \right)}{c^{2}} {\vec v}}{m_{0} \gamma}\]