Transmission matrix of lossless transmission line¶
Knowing the length of the transmission line, as well as the surge impedance of the line and the propagation constant of the signal, it is possible to calculate the parameters \(A, B, C, D\) of the transmission matrix of a lossless line.
Notes:
See Transmission Matrix.
Conditions:
The transmission line is lossless.
- Symbol:
A
- Latex:
\(A\)
- Dimension:
dimensionless
- voltage_current_parameter¶
Ratio of input
voltage
to outputcurrent
in case of a short circuit at the output.
- Symbol:
B
- Latex:
\(B\)
- Dimension:
impedance
- Symbol:
C
- Latex:
\(C\)
- Dimension:
conductance
- current_current_parameter¶
Ratio of input
current
to outputcurrent
in case of a short circuit at the output.
- Symbol:
D
- Latex:
\(D\)
- Dimension:
dimensionless
- surge_impedance¶
surge_impedance
of the transmission line.
- Symbol:
Z_S
- Latex:
\(Z_\text{S}\)
- Dimension:
impedance
- Symbol:
l
- Latex:
\(l\)
- Dimension:
length
- phase_constant¶
:symbols`phase_constant`.
- Symbol:
beta
- Latex:
\(\beta\)
- Dimension:
1/length
- law¶
[[A, B], [C, D]] = [[cos(beta * l), I * Z_S * sin(beta * l)], [I / Z_S * sin(beta * l), cos(beta * l)]]
- Latex:
- \[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \cos{\left(\beta l \right)} & i Z_\text{S} \sin{\left(\beta l \right)} \\ \frac{i}{Z_\text{S}} \sin{\left(\beta l \right)} & \cos{\left(\beta l \right)} \end{pmatrix}\end{split}\]