Transmission matrix of lossless transmission line¶
Knowing the length of the transmission line, as well as the surge impedance of the line and the propagation constant of the signal, it is possible to calculate the parameters \(A, B, C, D\) of the transmission matrix of a lossless line.
Notes:
See Transmission Matrix.
Conditions:
The transmission line is lossless.
- Symbol:
A- Latex:
\(A\)
- Dimension:
dimensionless
- voltage_current_parameter¶
Ratio of input
voltageto outputcurrentin case of a short circuit at the output.
- Symbol:
B- Latex:
\(B\)
- Dimension:
impedance
- Symbol:
C- Latex:
\(C\)
- Dimension:
conductance
- current_current_parameter¶
Ratio of input
currentto outputcurrentin case of a short circuit at the output.
- Symbol:
D- Latex:
\(D\)
- Dimension:
dimensionless
- surge_impedance¶
surge_impedanceof the transmission line.
- Symbol:
Z_S- Latex:
\(Z_\text{S}\)
- Dimension:
impedance
- Symbol:
l- Latex:
\(l\)
- Dimension:
length
- phase_constant¶
:symbols`phase_constant`.
- Symbol:
beta- Latex:
\(\beta\)
- Dimension:
1/length
- law¶
[[A, B], [C, D]] = [[cos(beta * l), I * Z_S * sin(beta * l)], [I / Z_S * sin(beta * l), cos(beta * l)]]- Latex:
- \[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \cos{\left(\beta l \right)} & i Z_\text{S} \sin{\left(\beta l \right)} \\ \frac{i}{Z_\text{S}} \sin{\left(\beta l \right)} & \cos{\left(\beta l \right)} \end{pmatrix}\end{split}\]