Attenuation coefficient in metal of microstrip line when width is greater than thickness

Under the conditions described below, the attenuation coefficient of the microstrip metal can be calculated from the surge impedance of the line, the surface resistance of the metal, the effective permittivity of the substrate, and the physical dimensions of the system.

Conditions:

  1. The thickness of the substrate of the microstrip line should be less than the effective width.

attenuation_coefficient

attenuation_coefficient of the metal of the microstrip line.

Symbol:

alpha

Latex:

\(\alpha\)

Dimension:

1/length

surface_resistance

electrical_resistance of the surface of the metal strip.

Symbol:

R_s

Latex:

\(R_\text{s}\)

Dimension:

impedance

surge_impedance

surge_impedance of the microstrip line.

Symbol:

Z_S

Latex:

\(Z_\text{S}\)

Dimension:

impedance

substrate_thickness

thickness of the substrate.

Symbol:

h

Latex:

\(h\)

Dimension:

length

effective_width

Effective width (see length) of the microstrip line. See Effective width of microstrip line.

Symbol:

w_eff

Latex:

\(w_\text{eff}\)

Dimension:

length

thickness

thickness of the strip of the microstrip line.

Symbol:

t

Latex:

\(t\)

Dimension:

length

effective_permittivity

Effective relative_permittivity of the microstrip line. See Effective permittivity of microstrip line.

Symbol:

epsilon_eff

Latex:

\(\varepsilon_\text{eff}\)

Dimension:

dimensionless

constant

Constant equal to \(6.1 \cdot 10^{-5} \, \Omega^{-2}\) (6.1e-5 Ohm^(-2)).

Symbol:

a

Latex:

\(a\)

Dimension:

impedance**(-2)

law

alpha = a * R_s * Z_S * epsilon_eff / h * (w_eff / h + 0.667 * w_eff / h / (w_eff / h + 1.444)) * (1 + (1 - 1.25 / pi * t / h + 1.25 / pi * log(2 * h / t)) / (w_eff / h))

Latex:
\[\alpha = \frac{a R_\text{s} Z_\text{S} \varepsilon_\text{eff}}{h} \left(\frac{w_\text{eff}}{h} + \frac{0.667 \frac{w_\text{eff}}{h}}{\frac{w_\text{eff}}{h} + 1.444}\right) \left(1 + \frac{1 - \frac{1.25}{\pi} \frac{t}{h} + \frac{1.25}{\pi} \log \left( \frac{2 h}{t} \right)}{\frac{w_\text{eff}}{h}}\right)\]