Group speed of wave in rectangular waveguide

The group speed of a wave in a rectangular waveguide depends on the ratio of the wavelength of the signal to the critical wavelength of the waveguide and the electromagnetic properties of the insulator within the waveguide.

Notation:

  1. \(c\) (c) is speed_of_light.

group_speed

group_speed of the wave in the waveguide.

Symbol:

v_g

Latex:

\(v_\text{g}\)

Dimension:

velocity

relative_permittivity

relative_permittivity of the insulator.

Symbol:

epsilon_r

Latex:

\(\varepsilon_\text{r}\)

Dimension:

dimensionless

relative_permeability

relative_permeability of the insulator.

Symbol:

mu_r

Latex:

\(\mu_\text{r}\)

Dimension:

dimensionless

wavelength

wavelength of the signal.

Symbol:

lambda

Latex:

\(\lambda\)

Dimension:

length

critical_wavelength

Critical wavelength of the system. See Critical wavelength of waveguide.

Symbol:

lambda_c

Latex:

\(\lambda_\text{c}\)

Dimension:

length

law

v_g = c * sqrt(1 - (lambda / lambda_c)^2) / sqrt(epsilon_r * mu_r)

Latex:
\[v_\text{g} = \frac{c \sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}}{\sqrt{\varepsilon_\text{r} \mu_\text{r}}}\]