Group speed of wave in rectangular waveguide¶
The group speed of a wave in a rectangular waveguide depends on the ratio of the wavelength of the signal to the critical wavelength of the waveguide and the electromagnetic properties of the insulator within the waveguide.
Notation:
\(c\) (
c) isspeed_of_light.
- group_speed¶
group_speedof the wave in the waveguide.
- Symbol:
v_g- Latex:
\(v_\text{g}\)
- Dimension:
velocity
- relative_permittivity¶
relative_permittivityof the insulator.
- Symbol:
epsilon_r- Latex:
\(\varepsilon_\text{r}\)
- Dimension:
dimensionless
- relative_permeability¶
relative_permeabilityof the insulator.
- Symbol:
mu_r- Latex:
\(\mu_\text{r}\)
- Dimension:
dimensionless
- wavelength¶
wavelengthof the signal.
- Symbol:
lambda- Latex:
\(\lambda\)
- Dimension:
length
- critical_wavelength¶
Critical
wavelengthof the system. See Critical wavelength of waveguide.
- Symbol:
lambda_c- Latex:
\(\lambda_\text{c}\)
- Dimension:
length
- law¶
v_g = c * sqrt(1 - (lambda / lambda_c)^2) / sqrt(epsilon_r * mu_r)- Latex:
- \[v_\text{g} = \frac{c \sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}}{\sqrt{\varepsilon_\text{r} \mu_\text{r}}}\]