Free energy change via temperature change and electric displacement change¶
The infinitesimal change in (Helmholtz) free energy of a system with a dielectric medium can be expressed using the change in temperature and the change in electric displacement.
Conditions:
The dielectric is isotropic whether or not the electric field is present.
The medium is homogeneous.
The volume change of the medium is insignificant.
Links:
Formula 31.7 on p. 122 of “General Course of Physics” (Obschiy kurs fiziki), vol. 3 by Sivukhin D.V. (1979).
- free_energy_density_change¶
Infinitesimal change in
helmholtz_free_energy
of the system per unitvolume
.- Symbol:
dH
- Latex:
\(dH\)
- Dimension:
energy/volume
- entropy_density¶
entropy
of the system per unitvolume
.- Symbol:
S
- Latex:
\(S\)
- Dimension:
energy/(temperature*volume)
- temperature_change¶
Infinitesimal change in
temperature
of the system.- Symbol:
dT
- Latex:
\(dT\)
- Dimension:
temperature
- electric_field_strength¶
-
- Symbol:
E
- Latex:
\(E\)
- Dimension:
voltage/length
- electric_displacement_change¶
Infinitesimal change in
electric_displacement
of the system.- Symbol:
dD
- Latex:
\(dD\)
- Dimension:
charge/area
- law¶
dH = -S * dT + E * dD
- Latex:
- \[dH = - S dT + E dD\]