Curl of electric field is negative magnetic flux density derivative¶
Faraday’s law of induction states that a change in magnetic flux density generates a rotational electric field. This law is valid for any magnetic field that changes over time.
Links:
- Symbol:
t
- Latex:
\(t\)
- Dimension:
time
- position_vector¶
Position vector of a point in space. See
distance_to_origin
.
- Symbol:
r
- Latex:
\({\vec r}\)
- Dimension:
length
- electric_field¶
Vector of the electric field as a function of
position_vector
andtime
. Seeelectric_field_strength
.
- Symbol:
E(r, t)
- Latex:
\({\vec E} \left( {\vec r}, t \right)\)
- Dimension:
voltage/length
- magnetic_flux_density¶
Vector of the
magnetic_flux_density
field as a function of ofposition_vector
andtime
.
- Symbol:
B(r, t)
- Latex:
\({\vec B} \left( {\vec r}, t \right)\)
- Dimension:
magnetic_density
- law¶
curl(E(r, t)) = -Derivative(B(r, t), t)
- Latex:
- \[\text{curl} \, {\vec E} \left( {\vec r}, t \right) = - \frac{\partial}{\partial t} {\vec B} \left( {\vec r}, t \right)\]