Solution with zero temperature boundaries¶
The heat equation coupled with a boundary condition can be solved to get a unique solution. In this boundary-value problem the heat transfer within a thin rod is observed, the temperature on both ends being zero. This restricts the number of functions \(f(x)\) that can satisfy the boundary equation \(f(x) = T(x, 0)\).
Notes:
\(f(x)\) represents initial spatial distribution of temperature.
Values \(B_n\) are found using the boundary condition \(f(x) = \sum_n T_n(x, 0)\) with the help of the Fourier method.
The total solution \(T(x, t) = \sum_n T_n(x, t)\).
Conditions:
Position \(x \in [0, L]\).
Temperature on both ends is zero: \(T_n(0, t) = 0\), \(T_n(L, t) = 0\)
Links:
- temperature¶
Solution to the heat equation corresponding to the \(n\)th mode. See
temperature
.
- Symbol:
T_n(x, t)
- Latex:
\(T_{n}\)
- Dimension:
temperature
- Symbol:
B_n
- Latex:
\(B_{n}\)
- Dimension:
temperature
- thermal_diffusivity¶
- Symbol:
alpha
- Latex:
\(\alpha\)
- Dimension:
area/time
- mode_number¶
Number of the mode. See
positive_number
.
- Symbol:
N
- Latex:
\(N\)
- Dimension:
dimensionless
- Symbol:
x_max
- Latex:
\(x_\text{max}\)
- Dimension:
length
- Symbol:
x
- Latex:
\(x\)
- Dimension:
length
- Symbol:
t
- Latex:
\(t\)
- Dimension:
time
- law¶
T_n(x, t) = B_n * sin(N * pi * x / x_max) * exp(-alpha * (N * pi / x_max)^2 * t)
- Latex:
- \[T_{n} = B_{n} \sin{\left(\frac{N \pi x}{x_\text{max}} \right)} \exp{\left(- \alpha \left(\frac{N \pi}{x_\text{max}}\right)^{2} t \right)}\]