Angular position via constant angular acceleration and time¶
If a body is rotating with a constant acceleration, its angular position is a quadratic function of time.
The axis is fixed.
Angular acceleration is constant, i.e. \(\frac{d \alpha}{d t} = 0.\)
Links:
- final_angular_position¶
angular_distance
attime
.- Symbol:
theta
- Latex:
\(\theta\)
- Dimension:
angle
- initial_angular_position¶
angular_distance
at \(t = 0\).- Symbol:
theta_0
- Latex:
\(\theta_{0}\)
- Dimension:
angle
- initial_angular_speed¶
angular_speed
at \(t = 0\).- Symbol:
w_0
- Latex:
\(\omega_{0}\)
- Dimension:
angle/time
- angular_acceleration¶
Constant
angular_acceleration
.- Symbol:
alpha
- Latex:
\(\alpha\)
- Dimension:
angle/time**2
- time¶
time
at whichfinal_angular_position
is measured.- Symbol:
t
- Latex:
\(t\)
- Dimension:
time
- law¶
theta = theta_0 + w_0 * t + alpha * t^2 / 2
- Latex:
- \[\theta = \theta_{0} + \omega_{0} t + \frac{\alpha t^{2}}{2}\]