Impulse is integral of force over time¶
Impulse measures the cumulative effect of a force acting over a finite time interval. Evaluating the time-integral of one Cartesian component of the force yields the corresponding component of the impulse vector.
Conditions:
The force is finite and integrable on the given time interval.
Links:
- Symbol:
J
- Latex:
\(J\)
- Dimension:
momentum
- Symbol:
t
- Latex:
\(t\)
- Dimension:
time
- Symbol:
F(t)
- Latex:
\(F{\left(t \right)}\)
- Dimension:
force
- Symbol:
t_0
- Latex:
\(t_{0}\)
- Dimension:
time
- Symbol:
t_1
- Latex:
\(t_{1}\)
- Dimension:
time
- law¶
J = Integral(F(t), (t, t_0, t_1))
- Latex:
- \[J = \int\limits_{t_{0}}^{t_{1}} F{\left(t \right)}\, dt\]