Effective permittivity of coplanar transmission line when distance is greater than thickness

Under the conditions described below, the effective permittivity of a coplanar line can be calculated from the relative permittivity of the substrate and the physical dimensions of the system.

Conditions:

  1. \(h < \frac{d}{4}\)

  2. \(0 < \left( \frac{l}{d} \right)^2 \le \frac{1}{2}\)

  3. \(0 < \left( \frac{\sinh{ \left((\pi l) / (4 h)\right) }}{\sinh{ \left((\pi d) / (4 h)\right) }} \right)^2 \le \frac{1}{2}\)

See below for symbol descriptions.

effective_permittivity

Effective relative_permittivity of the coplanar line. See Effective permittivity of coplanar line.

Symbol:

epsilon_eff

Latex:

\(\varepsilon_\text{eff}\)

Dimension:

dimensionless

relative_permittivity

relative_permittivity of the dielectric substrate of the coplanar line.

Symbol:

epsilon_r

Latex:

\(\varepsilon_\text{r}\)

Dimension:

dimensionless

electrode_distance

euclidean_distance between the first and last electrodes.

Symbol:

d

Latex:

\(d\)

Dimension:

length

substrate_thickness

thickness of the substrate.

Symbol:

h

Latex:

\(h\)

Dimension:

length

central_electrode_width

Width (see length) of the central electrode of the coplanar line.

Symbol:

l

Latex:

\(l\)

Dimension:

length

law

epsilon_eff = 1 + (epsilon_r - 1) / 2 * log(2 * (1 + (1 - (l / d)^2)^(1 / 4)) / (1 - (1 - (l / d)^2)^(1 / 4))) / log(2 * (1 + (1 - (sinh(pi * l / (4 * h)) / sinh(pi * d / (4 * h)))^2)^(1 / 4)) / (1 - (1 - (sinh(pi * l / (4 * h)) / sinh(pi * d / (4 * h)))^2)^(1 / 4)))

Latex:
\[\varepsilon_\text{eff} = 1 + \frac{\varepsilon_\text{r} - 1}{2} \frac{\log \left( \frac{2 \left(1 + \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}\right)}{1 - \left(1 - \left(\frac{l}{d}\right)^{2}\right)^{\frac{1}{4}}} \right)}{\log \left( \frac{2 \left(1 + \left(1 - \left(\frac{\sinh{\left(\frac{\pi l}{4 h} \right)}}{\sinh{\left(\frac{\pi d}{4 h} \right)}}\right)^{2}\right)^{\frac{1}{4}}\right)}{1 - \left(1 - \left(\frac{\sinh{\left(\frac{\pi l}{4 h} \right)}}{\sinh{\left(\frac{\pi d}{4 h} \right)}}\right)^{2}\right)^{\frac{1}{4}}} \right)}\]