Velocity relative to reference frame¶
For any reference frame, whether it is inertial or not, the motion relative to it can be described using the position vector relative to that frame’s origin.
Links:
- relative_velocity_law(position_, time_)[source]¶
Velocity relative to \(S\).
- Law:
v_rel = Derivative(r(t), t)
- Latex:
- \[{\vec v}_\text{rel} = \frac{d \vec r}{d t}\]
- Parameters:
position_ –
radius vector, or position vector, of body in \(S\) as a function of time
Symbol:
r(t)
Latex: \(\vec r(t)\)
Dimension: length
time_ –
time
Symbol:
t
Dimension: time
- Returns:
velocity relative to \(S\)
Symbol:
v_rel
Latex: \({\vec v}_\text{rel}\)
Dimension: velocity
- relative_position_law(initial_position_, velocity_, time_)[source]¶
Final position via initial position and velocity as a function of time.
- Law:
r = r_0 + Integral(v_rel(t), t)
- Latex:
- \[\vec r = {\vec r}_0 + \int {\vec v}_\text{rel}(t) dt\]
- Parameters:
initial_position_ –
position vector in \(S\) at \(t = 0\)
Symbol:
r_0
Latex: \({\vec r}_0\)
Dimension: length
velocity_ –
velocity relative to \(S\) as a function of time
Symbol:
v_rel(t)
Latex: \({\vec v}_\text{rel}(t)\)
Dimension: velocity
time_ –
time
Symbol:
t
Dimension: time
- Returns:
position vector in \(S\) at time \(t\)
Symbol:
r
Latex: \(\vec r\)
Dimension: length