Scattering matrix to transmission matrix¶
Knowing the parameters of the scattering matrix, it is possible to determine the parameters of the transmission matrix.
Notes:
See Transmission Matrix.
See Scattering Matrix.
See this site for more information about \(S\)-parameters.
See this Wikipedia page for more information about \(S\)-parameters.
- Symbol:
A
- Latex:
\(A\)
- Dimension:
dimensionless
- voltage_current_parameter¶
Ratio of input
voltage
to outputcurrent
in case of a short circuit at the output.
- Symbol:
B
- Latex:
\(B\)
- Dimension:
impedance
- Symbol:
C
- Latex:
\(C\)
- Dimension:
conductance
- current_current_parameter¶
Ratio of input
current
to outputcurrent
in case of a short circuit at the output.
- Symbol:
D
- Latex:
\(D\)
- Dimension:
dimensionless
- surge_impedance¶
- Symbol:
Z_S
- Latex:
\(Z_\text{S}\)
- Dimension:
impedance
- input_voltage_reflection_coefficient¶
Input port
voltage
reflection_coefficient
.
- Symbol:
S_ii
- Latex:
\(S_\text{ii}\)
- Dimension:
dimensionless
- reverse_voltage_gain¶
Reverse
voltage
circuit_gain
.
- Symbol:
S_io
- Latex:
\(S_\text{io}\)
- Dimension:
dimensionless
- forward_voltage_gain¶
Forward
voltage
circuit_gain
.
- Symbol:
S_oi
- Latex:
\(S_\text{oi}\)
- Dimension:
dimensionless
- output_voltage_reflection_coefficient¶
Output port
voltage
reflection_coefficient
.
- Symbol:
S_oo
- Latex:
\(S_\text{oo}\)
- Dimension:
dimensionless
- law¶
[[A, B], [C, D]] = [[((1 + S_ii) * (1 - S_oo) + S_io * S_oi) / (2 * S_oi), Z_S * ((1 + S_ii) * (1 + S_oo) - S_io * S_oi) / (2 * S_oi)], [((1 - S_ii) * (1 - S_oo) - S_io * S_oi) / Z_S / (2 * S_oi), ((1 - S_ii) * (1 + S_oo) + S_io * S_oi) / (2 * S_oi)]]
- Latex:
- \[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \frac{\left(1 + S_\text{ii}\right) \left(1 - S_\text{oo}\right) + S_\text{io} S_\text{oi}}{2 S_\text{oi}} & \frac{Z_\text{S} \left(\left(1 + S_\text{ii}\right) \left(1 + S_\text{oo}\right) - S_\text{io} S_\text{oi}\right)}{2 S_\text{oi}} \\ \frac{\left(1 - S_\text{ii}\right) \left(1 - S_\text{oo}\right) - S_\text{io} S_\text{oi}}{Z_\text{S}} \frac{1}{2 S_\text{oi}} & \frac{\left(1 - S_\text{ii}\right) \left(1 + S_\text{oo}\right) + S_\text{io} S_\text{oi}}{2 S_\text{oi}} \end{pmatrix}\end{split}\]