Effective permittivity of microstrip line from frequency¶
The frequency-dependent effective permittivity of the microstrip line can be calculated from its frequency-indendent effective permittivity and physical dimensions.
Notation:
\(c\) (
c
) isspeed_of_light
.
- effective_permittivity¶
Effective
relative_permittivity
of the microstrip line when frequency dependence is taken into account. See Effective permittivity of microstrip line.
- Symbol:
epsilon_eff
- Latex:
\(\varepsilon_\text{eff}\)
- Dimension:
dimensionless
- relative_permittivity¶
relative_permittivity
of the dielectric substrate of the microstrip line.
- Symbol:
epsilon_r
- Latex:
\(\varepsilon_\text{r}\)
- Dimension:
dimensionless
- frequency¶
temporal_frequency
of the signal.
- Symbol:
f
- Latex:
\(f\)
- Dimension:
frequency
- Symbol:
h
- Latex:
\(h\)
- Dimension:
length
- Symbol:
w
- Latex:
\(w\)
- Dimension:
length
- independent_effective_permittivity¶
relative_permittivity
of the microstrip line when frequency dependence is omitted. See Effective permittivity of microstrip line.
- Symbol:
epsilon_eff0
- Latex:
\(\varepsilon_{\text{eff}, 0}\)
- Dimension:
dimensionless
- law¶
epsilon_eff = ((sqrt(epsilon_r) - sqrt(epsilon_eff0)) / (1 + 4 / (4 * h * f * (1 + 2 * log(1 + w / h))^2 * sqrt(epsilon_r - 1) * 1 / (2 * c))^(3/2)) + sqrt(epsilon_eff0))^2
- Latex:
- \[\varepsilon_\text{eff} = \left(\frac{\sqrt{\varepsilon_\text{r}} - \sqrt{\varepsilon_{\text{eff}, 0}}}{1 + \frac{4}{\left(4 h f \left(1 + 2 \log \left( 1 + \frac{w}{h} \right)\right)^{2} \sqrt{\varepsilon_\text{r} - 1} \frac{1}{2 c}\right)^{\frac{3}{2}}}} + \sqrt{\varepsilon_{\text{eff}, 0}}\right)^{2}\]