Characteristic resitance of rectangular waveguide for transverse magnetic waves¶
The resistance of a rectangular waveguide to transverse magnetic waves can be calculated from the resistance of the medium within the waveguide, the wavelength of the signal and the critical wavelength of the waveguide.
Conditions:
Waves propagating in the waveguide must be transverse magnetic waves.
- wave_impedance¶
wave_impedance
in the waveguide.
- Symbol:
eta
- Latex:
\(\eta\)
- Dimension:
impedance
- medium_impedance¶
wave_impedance
of the medium filling the waveguide.
- Symbol:
eta_0
- Latex:
\(\eta_{0}\)
- Dimension:
impedance
- vacuum_wavelength¶
wavelength
of the signal in vacuum.
- Symbol:
lambda
- Latex:
\(\lambda\)
- Dimension:
length
- critical_wavelength¶
Critical
wavelength
. See Critical wavelength of waveguide.
- Symbol:
lambda_c
- Latex:
\(\lambda_\text{c}\)
- Dimension:
length
- law¶
eta = eta_0 * sqrt(1 - (lambda / lambda_c)^2)
- Latex:
- \[\eta = \eta_{0} \sqrt{1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}}\]