Force from acceleration and velocity¶
In special relativity, the Newton’s second law does not hold in the classical form \(\vec F = m \vec a\), but force can still be expressed via acceleration and velocity.
Conditions:
This law applies to special relativity.
Links:
- Symbol:
F
- Latex:
\({\vec F}\)
- Dimension:
force
- Symbol:
m_0
- Latex:
\(m_{0}\)
- Dimension:
mass
- tangential_acceleration¶
Vector of the body’s
acceleration
tangential to thevelocity
vector.
- Symbol:
a_t
- Latex:
\({\vec a}_\text{t}\)
- Dimension:
acceleration
- normal_acceleration¶
Vector of the body’s
acceleration
normal to thevelocity
vector.
- Symbol:
a_n
- Latex:
\({\vec a}_\text{n}\)
- Dimension:
acceleration
- Symbol:
v
- Latex:
\({\vec v}\)
- Dimension:
velocity
- lorentz_factor¶
- Symbol:
gamma
- Latex:
\(\gamma\)
- Dimension:
dimensionless
- law¶
F = gamma^3 * m_0 * a_t + gamma * m_0 * a_n
- Latex:
- \[{\vec F} = \gamma^{3} m_{0} {\vec a}_\text{t} + \gamma m_{0} {\vec a}_\text{n}\]