Time independent solution in one dimension¶
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system.
Notation:
- \(\hbar\) ( - hbar) is- hbar.
Condition:
- This law works in the case of a single spatial dimension. To use it for the 3-dimensional space replace the spatial second derivative with the Laplace operator. 
- The wave function is independent of time. 
Links:
- Symbol:
- x
- Latex:
- \(x\) 
- Dimension:
- length
- wave_function¶
- wave_functionas a function of- position.
- Symbol:
- psi(x)
- Latex:
- \(\psi{\left(x \right)}\) 
- Dimension:
- 1/sqrt(length)
- potential_energy¶
- potential_energyas a function of- position.
- Symbol:
- U(x)
- Latex:
- \(U{\left(x \right)}\) 
- Dimension:
- energy
- Symbol:
- m
- Latex:
- \(m\) 
- Dimension:
- mass
- Symbol:
- E
- Latex:
- \(E\) 
- Dimension:
- energy
- law¶
- -hbar^2 / (2 * m) * Derivative(psi(x), (x, 2)) + U(x) * psi(x) = E * psi(x)- Latex:
- \[- \frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi{\left(x \right)} + U{\left(x \right)} \psi{\left(x \right)} = E \psi{\left(x \right)}\]