Wave impedance of coplanar line when length to distance ratio squared is between \(\frac{1}{2}\) and \(1\)¶
Under the conditions described below, the wave impedance of a coplanar line depends on its effective permittivity and physical dimensions.
Conditions:
\(h < \frac{d}{4}\)
\(\frac{1}{2} < \left( \frac{l}{d} \right)^2 \le 1\)
Here, \(h\) is the thickness of the substrate, and \(d\) is the distance between the first and last electrodes.
- wave_impedance¶
wave_impedance
of the coplanar line.
- Symbol:
eta
- Latex:
\(\eta\)
- Dimension:
impedance
- effective_permittivity¶
Effective
relative_permittivity
of the coplanar line. See Effective permittivity of coplanar line.
- Symbol:
epsilon_eff
- Latex:
\(\varepsilon_\text{eff}\)
- Dimension:
dimensionless
- electrode_distance¶
euclidean_distance
between the first and last electrodes.
- Symbol:
d
- Latex:
\(d\)
- Dimension:
length
- Symbol:
l
- Latex:
\(l\)
- Dimension:
length
- resistance_constant¶
Constant equal to \(30 \pi^2 \, \Omega\) (
30 * pi^2 Ohm
).
- Symbol:
R_0
- Latex:
\(R_0\)
- Dimension:
impedance
- law¶
eta = R_0 / sqrt(epsilon_eff) / log(2 * (1 + sqrt(l / d)) / (1 - sqrt(l / d)))
- Latex:
- \[\eta = \frac{R_0}{\sqrt{\varepsilon_\text{eff}}} \frac{1}{\log \left( \frac{2 \left(1 + \sqrt{\frac{l}{d}}\right)}{1 - \sqrt{\frac{l}{d}}} \right)}\]