Semimajor axis via Kepler’s constant and total energy¶
The semi-major axis of an orbiting planet depends on the Kepler’s constant of the star—planet system and the total energy of the planet per unit of its mass.
Notes:
Works for both elliptical (\(\varepsilon < 0\)) and hyperbolical (\(\varepsilon > 0\)) orbits.
Links:
Sivukhin D.V. (1979), Obshchiy kurs fiziki [General course of Physics], vol. 1, p. 317, (58.2).
- semimajor_axis¶
The
semimajor_axis
of the planet’s orbit.- Symbol:
a
- Latex:
\(a\)
- Dimension:
length
- kepler_constant¶
The
kepler_constant
, whose value is determined by themass
of the orbited star.- Symbol:
K
- Latex:
\(\mathfrak{K}\)
- Dimension:
length**3/time**2
- specific_energy¶
specific_energy
of the planet. Can be negative or positive depending on the sign of the planet’s energy.- Symbol:
epsilon
- Latex:
\(\varepsilon\)
- Dimension:
energy/mass
- law¶
a = 2 * pi^2 * K / Abs(epsilon)
- Latex:
- \[a = \frac{2 \pi^{2} \mathfrak{K}}{\left|{\varepsilon}\right|}\]