Resonant frequency of rectangular resonator

A rectangular resonator consists of metal walls and a material filling it.

Notation:

  1. \(c\) (c) is speed_of_light.

Links:

  1. Mahatma Gandhi Central University, formula 17 on page 12 (PDF file).

resonant_frequency

Resonant temporal_frequency of the resonator.

Symbol:

f_r

Latex:

\(f_\text{r}\)

Dimension:

frequency

first_index

Index that changes along the width of the resonator, see positive_number.

Symbol:

m

Latex:

\(m\)

Dimension:

dimensionless

second_index

Index that changes along the height of the resonator, see positive_number.

Symbol:

n

Latex:

\(n\)

Dimension:

dimensionless

third_index

Index that changes along the length of the resonator, see positive_number.

Symbol:

p

Latex:

\(p\)

Dimension:

dimensionless

width

length of the resonator along the axis perpendicular to the axis of wave propagation and to height.

Symbol:

l_1

Latex:

\(l_{1}\)

Dimension:

length

height

length of the resonator along the axis perpendicular to the axis of wave propagation and to width.

Symbol:

l_2

Latex:

\(l_{2}\)

Dimension:

length

length

length of the resonator along the axis of wave propagation.

Symbol:

l_3

Latex:

\(l_{3}\)

Dimension:

length

relative_permittivity

relative_permittivity of the medium filling the resonator.

Symbol:

epsilon_r

Latex:

\(\varepsilon_\text{r}\)

Dimension:

dimensionless

relative_permeability

relative_permeability of the medium filling the resonator.

Symbol:

mu_r

Latex:

\(\mu_\text{r}\)

Dimension:

dimensionless

law

f_r = c / (2 * sqrt(epsilon_r * mu_r)) * sqrt((m / l_1)^2 + (n / l_2)^2 + (p / l_3)^2)

Latex:
\[f_\text{r} = \frac{c}{2 \sqrt{\varepsilon_\text{r} \mu_\text{r}}} \sqrt{\left(\frac{m}{l_{1}}\right)^{2} + \left(\frac{n}{l_{2}}\right)^{2} + \left(\frac{p}{l_{3}}\right)^{2}}\]