Resonant frequency of rectangular resonator¶
A rectangular resonator consists of metal walls and a material filling it.
Notation:
\(c\) (
c) isspeed_of_light.
Links:
- resonant_frequency¶
Resonant
temporal_frequencyof the resonator.
- Symbol:
f_r- Latex:
\(f_\text{r}\)
- Dimension:
frequency
- first_index¶
Index that changes along the
widthof the resonator, seepositive_number.
- Symbol:
m- Latex:
\(m\)
- Dimension:
dimensionless
- second_index¶
Index that changes along the
heightof the resonator, seepositive_number.
- Symbol:
n- Latex:
\(n\)
- Dimension:
dimensionless
- third_index¶
Index that changes along the
lengthof the resonator, seepositive_number.
- Symbol:
p- Latex:
\(p\)
- Dimension:
dimensionless
- width¶
lengthof the resonator along the axis perpendicular to the axis of wave propagation and toheight.
- Symbol:
l_1- Latex:
\(l_{1}\)
- Dimension:
length
- height¶
lengthof the resonator along the axis perpendicular to the axis of wave propagation and towidth.
- Symbol:
l_2- Latex:
\(l_{2}\)
- Dimension:
length
- Symbol:
l_3- Latex:
\(l_{3}\)
- Dimension:
length
- relative_permittivity¶
relative_permittivityof the medium filling the resonator.
- Symbol:
epsilon_r- Latex:
\(\varepsilon_\text{r}\)
- Dimension:
dimensionless
- relative_permeability¶
relative_permeabilityof the medium filling the resonator.
- Symbol:
mu_r- Latex:
\(\mu_\text{r}\)
- Dimension:
dimensionless
- law¶
f_r = c / (2 * sqrt(epsilon_r * mu_r)) * sqrt((m / l_1)^2 + (n / l_2)^2 + (p / l_3)^2)- Latex:
- \[f_\text{r} = \frac{c}{2 \sqrt{\varepsilon_\text{r} \mu_\text{r}}} \sqrt{\left(\frac{m}{l_{1}}\right)^{2} + \left(\frac{n}{l_{2}}\right)^{2} + \left(\frac{p}{l_{3}}\right)^{2}}\]