Relativistic mass moment¶
Mass moment is an additive physical quantity useful for deriving the Lorentz transformation of angular momentum. For isolated systems, it is conserved in time, but unlike angular momentum, the vector of mass moment is a polar (“ordinary”) vector and therefore invariant under inversion.
Links:
- mass_moment¶
Vector of mass moment.
- Symbol:
N
- Latex:
\({\vec N}\)
- Dimension:
length*mass
- Symbol:
m_0
- Latex:
\(m_{0}\)
- Dimension:
mass
- Symbol:
t
- Latex:
\(t\)
- Dimension:
time
- lorentz_factor¶
- Symbol:
gamma
- Latex:
\(\gamma\)
- Dimension:
dimensionless
- position_vector¶
Vector of the body’s position. See
distance_to_origin
.
- Symbol:
r
- Latex:
\({\vec r}\)
- Dimension:
length
- Symbol:
v
- Latex:
\({\vec v}\)
- Dimension:
velocity
- law¶
N = m_0 * gamma^2 * (r - v * t)
- Latex:
- \[{\vec N} = m_{0} \gamma^{2} \left({\vec r} - {\vec v} t\right)\]