Transmission matrix of π-type matrix¶
The π-type circuit consists of the first impedance connected in parallel, the third impedance connected in series, and the second impedance connected in parallel. Knowing the impedances, it is possible to calculate the parameters \(A, B, C, D\) of the transmission matrix of this line.
Notes:
See Transmission Matrix.
Scheme of the circuit:
- Symbol:
A
- Latex:
\(A\)
- Dimension:
dimensionless
- voltage_current_parameter¶
Ratio of input
voltage
to outputcurrent
in case of a short circuit at the output.
- Symbol:
B
- Latex:
\(B\)
- Dimension:
impedance
- Symbol:
C
- Latex:
\(C\)
- Dimension:
conductance
- current_current_parameter¶
Ratio of input
current
to outputcurrent
in case of a short circuit at the output.
- Symbol:
D
- Latex:
\(D\)
- Dimension:
dimensionless
- first_impedance¶
First
electrical_impedance
.
- Symbol:
Z_1
- Latex:
\(Z_{1}\)
- Dimension:
impedance
- second_impedance¶
Second
electrical_impedance
.
- Symbol:
Z_2
- Latex:
\(Z_{2}\)
- Dimension:
impedance
- third_impedance¶
Third
electrical_impedance
.
- Symbol:
Z_3
- Latex:
\(Z_{3}\)
- Dimension:
impedance
- law¶
[[A, B], [C, D]] = [[1 + Z_3 / Z_2, Z_3], [1 / Z_1 + 1 / Z_2 + Z_3 / (Z_1 * Z_2), 1 + Z_3 / Z_1]]
- Latex:
- \[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 + \frac{Z_{3}}{Z_{2}} & Z_{3} \\ \frac{1}{Z_{1}} + \frac{1}{Z_{2}} + \frac{Z_{3}}{Z_{1} Z_{2}} & 1 + \frac{Z_{3}}{Z_{1}} \end{pmatrix}\end{split}\]