General heat equation in 3D¶
Heat equation governs heat diffusion, as well as other diffusive processes. It describes the evolution of heat transferred from hotter to colder environments in time and space.
Conditions:
The medium is isotropic.
There is no mass transfer or radiation in the system.
Links:
- Symbol:
rho
- Latex:
\(\rho\)
- Dimension:
mass/volume
- medium_specific_isobaric_heat_capacity¶
mass
-specific isobaricheat_capacity
of the medium.
- Symbol:
c_p
- Latex:
\(c_{p}\)
- Dimension:
energy/(mass*temperature)
- position_vector¶
Position vector. See
distance_to_origin
.
- Symbol:
r
- Latex:
\({\vec r}\)
- Dimension:
length
- Symbol:
t
- Latex:
\(t\)
- Dimension:
time
- temperature¶
temperature
as a function ofposition_vector
andtime
.
- Symbol:
T(r, t)
- Latex:
\(T{\left({\vec r},t \right)}\)
- Dimension:
temperature
- thermal_conductivity¶
thermal_conductivity
as a function ofposition_vector
.
- Symbol:
k(r)
- Latex:
\(k{\left({\vec r} \right)}\)
- Dimension:
power/(length*temperature)
- heat_source_density¶
Volumetric density of heat sources (i.e.
power
produced per unitvolume
) as a function ofposition_vector
.
- Symbol:
q(r)
- Latex:
\(q{\left({\vec r} \right)}\)
- Dimension:
power/volume
- law¶
rho * c_p * Derivative(T(r, t), t) = div(k(r) * grad(T(r, t))) + q(r)
- Latex:
- \[\rho c_{p} \frac{\partial}{\partial t} T{\left({\vec r},t \right)} = \text{div} \, k{\left({\vec r} \right)} \text{grad} \, T{\left({\vec r},t \right)} + q{\left({\vec r} \right)}\]