General heat equation in 3D¶
Heat equation governs heat diffusion, as well as other diffusive processes. It describes the evolution of heat transferred from hotter to colder environments in time and space.
Conditions:
The medium is isotropic.
There is no mass transfer or radiation in the system.
Links:
- Symbol:
rho- Latex:
\(\rho\)
- Dimension:
mass/volume
- medium_specific_isobaric_heat_capacity¶
mass-specific isobaricheat_capacityof the medium.
- Symbol:
c_p- Latex:
\(c_{p}\)
- Dimension:
energy/(mass*temperature)
- position_vector¶
Position vector. See
distance_to_origin.
- Symbol:
r- Latex:
\({\vec r}\)
- Dimension:
length
- Symbol:
t- Latex:
\(t\)
- Dimension:
time
- temperature¶
temperatureas a function ofposition_vectorandtime.
- Symbol:
T(r, t)- Latex:
\(T{\left({\vec r},t \right)}\)
- Dimension:
temperature
- thermal_conductivity¶
thermal_conductivityas a function ofposition_vector.
- Symbol:
k(r)- Latex:
\(k{\left({\vec r} \right)}\)
- Dimension:
power/(length*temperature)
- heat_source_density¶
Volumetric density of heat sources (i.e.
powerproduced per unitvolume) as a function ofposition_vector.
- Symbol:
q(r)- Latex:
\(q{\left({\vec r} \right)}\)
- Dimension:
power/volume
- law¶
rho * c_p * Derivative(T(r, t), t) = div(k(r) * grad(T(r, t))) + q(r)- Latex:
- \[\rho c_{p} \frac{\partial}{\partial t} T{\left({\vec r},t \right)} = \text{div} \, k{\left({\vec r} \right)} \text{grad} \, T{\left({\vec r},t \right)} + q{\left({\vec r} \right)}\]