Phase speed of wave in rectangular waveguide

The phase speed of a wave in a rectangular waveguide depends on the ratio of the wavelength of the signal to the critical wavelength of the waveguide and the electromagnetic properties of the insulator within the waveguide.

Notation:

  1. \(c\) (c) is speed_of_light.

phase_speed

phase_speed of the wave in the waveguide.

Symbol:

v

Latex:

\(v\)

Dimension:

velocity

relative_permittivity

relative_permittivity of the insulator.

Symbol:

epsilon_r

Latex:

\(\varepsilon_\text{r}\)

Dimension:

dimensionless

relative_permeability

relative_permeability of the insulator.

Symbol:

mu_r

Latex:

\(\mu_\text{r}\)

Dimension:

dimensionless

wavelength

wavelength of the signal.

Symbol:

lambda

Latex:

\(\lambda\)

Dimension:

length

critical_wavelength

Critical wavelength of the system. See Critical wavelength of waveguide.

Symbol:

lambda_c

Latex:

\(\lambda_\text{c}\)

Dimension:

length

law

v = c / sqrt(epsilon_r * mu_r * (1 - (lambda / lambda_c)^2))

Latex:
\[v = \frac{c}{\sqrt{\varepsilon_\text{r} \mu_\text{r} \left(1 - \left(\frac{\lambda}{\lambda_\text{c}}\right)^{2}\right)}}\]