Curl of magnetic field is free current density and electric displacement derivative¶
The magnetic field circulation theorem states that an electric current and a change in electric displacement generate a rotational magnetic field. Also known as the Ampère’s circuital law.
Notes:
The \(\text{curl}\) operator is only defined for a 3D space.
Links:
- Symbol:
t
- Latex:
\(t\)
- Dimension:
time
- position_vector¶
Position vector of a point in space. See
distance_to_origin
.
- Symbol:
r
- Latex:
\({\vec r}\)
- Dimension:
length
- magnetic_field¶
Vector of the magnetic field as a function of
position_vector
andtime
. See :symbols:~magnetic_field_strength`.
- Symbol:
H(r, t)
- Latex:
\({\vec H} \left( {\vec r}, t \right)\)
- Dimension:
current/length
- electric_displacement¶
Vector of the
electric_displacement
field as a function ofposition_vector
andtime
.
- Symbol:
D(r, t)
- Latex:
\({\vec D} \left( {\vec r}, t \right)\)
- Dimension:
charge/area
- free_current_density¶
Vector of the free (i.e. unbound)
current_density
field as a function ofposition_vector
andtime
.
- Symbol:
J_f(r, t)
- Latex:
\({\vec J}_\text{f} \left( {\vec r}, t \right)\)
- Dimension:
current/area
- law¶
curl(H(r, t)) = J_f(r, t) + Derivative(D(r, t), t)
- Latex:
- \[\text{curl} \, {\vec H} \left( {\vec r}, t \right) = {\vec J}_\text{f} \left( {\vec r}, t \right) + \frac{\partial}{\partial t} {\vec D} \left( {\vec r}, t \right)\]