Transmission matrix of lossy transmission line¶
The transmission parameters matrix is one of the ways to describe a microwave device. The \(ABCD\)-parameters of the device act as elements of this matrix. The matrix equation relates the input voltage and input current to the output voltage and output current. Knowing the length and the loss factor of the transmission line, as well as the surge impedance of the line and the constant propagation of signal, it is possible to calculate the parameters \(A, B, C, D\) of the transmission matrix of this line.
Notes:
See Transmission Matrix.
- Symbol:
A
- Latex:
\(A\)
- Dimension:
dimensionless
- voltage_current_parameter¶
Ratio of input
voltage
to outputcurrent
in case of a short circuit at the output.
- Symbol:
B
- Latex:
\(B\)
- Dimension:
impedance
- Symbol:
C
- Latex:
\(C\)
- Dimension:
conductance
- current_current_parameter¶
Ratio of input
current
to outputcurrent
in case of a short circuit at the output.
- Symbol:
D
- Latex:
\(D\)
- Dimension:
dimensionless
- surge_impedance¶
surge_impedance
of the transmission line.
- Symbol:
Z_S
- Latex:
\(Z_\text{S}\)
- Dimension:
impedance
- Symbol:
l
- Latex:
\(l\)
- Dimension:
length
- propagation_constant¶
- Symbol:
gamma
- Latex:
\(\gamma\)
- Dimension:
1/length
- law¶
[[A, B], [C, D]] = [[cosh(l * gamma), Z_S * sinh(l * gamma)], [sinh(l * gamma) / Z_S, cosh(l * gamma)]]
- Latex:
- \[\begin{split}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \cosh{\left(l \gamma \right)} & Z_\text{S} \sinh{\left(l \gamma \right)} \\ \frac{\sinh{\left(l \gamma \right)}}{Z_\text{S}} & \cosh{\left(l \gamma \right)} \end{pmatrix}\end{split}\]