Attenuation coefficient in dielectric substate of microstrip line¶
The attenuation coefficient of the microstrip metal can be calculated from the effective and relative permittivity of the microstrip, the wavelength of the signal in vacuum and the dielectric loss angle of the substrate.
- attenuation_coefficient¶
attenuation_coefficientof the microstrip line.
- Symbol:
alpha- Latex:
\(\alpha\)
- Dimension:
1/length
- relative_permittivity¶
relative_permittivityof the dielectric substrate of the microstrip line.
- Symbol:
epsilon_r- Latex:
\(\varepsilon_\text{r}\)
- Dimension:
dimensionless
- effective_permittivity¶
Effective
relative_permittivityof the microstrip line. See Effective permittivity of microstrip line.
- Symbol:
epsilon_eff- Latex:
\(\varepsilon_\text{eff}\)
- Dimension:
dimensionless
- wavelength¶
wavelengthin vacuum.
- Symbol:
lambda- Latex:
\(\lambda\)
- Dimension:
length
- loss_tangent¶
- Symbol:
tan(delta)- Latex:
\(\tan \delta\)
- Dimension:
dimensionless
- law¶
alpha = 27.3 * epsilon_r / sqrt(epsilon_eff) * (epsilon_eff - 1) / (epsilon_r - 1) * tan(delta) / lambda- Latex:
- \[\alpha = 27.3 \frac{\varepsilon_\text{r}}{\sqrt{\varepsilon_\text{eff}}} \frac{\varepsilon_\text{eff} - 1}{\varepsilon_\text{r} - 1} \frac{\tan \delta}{\lambda}\]