Intensive parameters relation¶
The Gibbs—Duhem relation is a relationship among the intensive parameters of the system. Subsequently, for a system with \(i\) components, there are \((i + 1)\) independent parameters, or degrees of freedom.
Notation:
\(d\) denotes an exact, path-independent differential.
Links:
- Symbol:
S
- Latex:
\(S\)
- Dimension:
energy/temperature
- temperature_change¶
Infinitesimal change in
temperature
of the system.
- Symbol:
dT
- Latex:
\(d T\)
- Dimension:
temperature
- Symbol:
V
- Latex:
\(V\)
- Dimension:
volume
- Symbol:
dp
- Latex:
\(d p\)
- Dimension:
pressure
- particle_count¶
particle_count
of the system.
- Symbol:
N
- Latex:
\(N\)
- Dimension:
dimensionless
- chemical_potential_change¶
Infinitesimal change in
chemical_potential
of the system.
- Symbol:
d(mu)
- Latex:
\(d \mu\)
- Dimension:
energy
- law¶
S * dT - V * dp + N * d(mu) = 0
- Latex:
- \[S d T - V d p + N d \mu = 0\]