Solution with zero temperature boundaries ========================================= The heat equation coupled with a boundary condition can be solved to get a unique solution. In this boundary-value problem the heat transfer within a thin rod is observed, the temperature on both ends being zero. This restricts the number of functions :math:`f(x)` that can satisfy the boundary equation :math:`f(x) = T(x, 0)`. **Notes:** #. :math:`f(x)` represents initial spatial distribution of temperature. .. _heat_transfer_zero_temperature_solution_coefficient_note: #. Values :math:`B_n` are found using the boundary condition :math:`f(x) = \sum_n T_n(x, 0)` with the help of the Fourier method. #. The total solution :math:`T(x, t) = \sum_n T_n(x, t)`. **Conditions:** #. Position :math:`x \in [0, L]`. #. Temperature on both ends is zero: :math:`T_n(0, t) = 0`, :math:`T_n(L, t) = 0` **Links:** #. `Paul's Online Math Notes, Example 1 `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.heat_transfer.solution_with_zero_temperature_boundaries .. py:data:: temperature Solution to the heat equation corresponding to the :math:`n`:sup:`th` mode. See :attr:`~symplyphysics.symbols.thermodynamics.temperature`. Symbol: :code:`T_n(x, t)` Latex: :math:`T_{n}` Dimension: :code:`temperature` .. py:data:: scaling_coefficient Scaling coefficient of the solution, see :ref:`Notes `. Symbol: :code:`B_n` Latex: :math:`B_{n}` Dimension: :code:`temperature` .. py:data:: thermal_diffusivity :attr:`~symplyphysics.symbols.thermodynamics.thermal_diffusivity`. Symbol: :code:`alpha` Latex: :math:`\alpha` Dimension: :code:`area/time` .. py:data:: mode_number Number of the mode. See :attr:`~symplyphysics.symbols.basic.positive_number`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: maximum_position Maximum possible :attr:`~symplyphysics.symbols.classical_mechanics.position`. Symbol: :code:`x_max` Latex: :math:`x_\text{max}` Dimension: :code:`length` .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position`, or spatial variable. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: law :code:`T_n(x, t) = B_n * sin(N * pi * x / x_max) * exp(-alpha * (N * pi / x_max)^2 * t)` Latex: .. math:: T_{n} = B_{n} \sin{\left(\frac{N \pi x}{x_\text{max}} \right)} \exp{\left(- \alpha \left(\frac{N \pi}{x_\text{max}}\right)^{2} t \right)}