Velocity relative to reference frame ==================================== For any reference frame, whether it is inertial or not, the motion relative to it can be described using the position vector relative to that frame's origin. **Links:** #. `Wikipedia `__. #. `Wikipedia (ru) `__. .. py:currentmodule:: symplyphysics.laws.kinematics.vector.velocity_relative_to_reference_frame .. py:function:: relative_velocity_law(position_, time_) Velocity relative to :math:`S`. Law: :code:`v_rel = Derivative(r(t), t)` Latex: .. math:: {\vec v}_\text{rel} = \frac{d \vec r}{d t} :param position\_: radius vector, or position vector, of body in :math:`S` as a function of time Symbol: :code:`r(t)` Latex: :math:`\vec r(t)` Dimension: *length* :param time\_: time Symbol: :code:`t` Dimension: *time* :return: velocity relative to :math:`S` Symbol: :code:`v_rel` Latex: :math:`{\vec v}_\text{rel}` Dimension: *velocity* .. py:function:: relative_position_law(initial_position_, velocity_, time_) Final position via initial position and velocity as a function of time. Law: :code:`r = r_0 + Integral(v_rel(t), t)` Latex: .. math:: \vec r = {\vec r}_0 + \int {\vec v}_\text{rel}(t) dt :param initial\_position\_: position vector in :math:`S` at :math:`t = 0` Symbol: :code:`r_0` Latex: :math:`{\vec r}_0` Dimension: *length* :param velocity\_: velocity relative to :math:`S` as a function of time Symbol: :code:`v_rel(t)` Latex: :math:`{\vec v}_\text{rel}(t)` Dimension: *velocity* :param time\_: time Symbol: :code:`t` Dimension: *time* :return: position vector in :math:`S` at time :math:`t` Symbol: :code:`r` Latex: :math:`\vec r` Dimension: *length*