Center of mass for a system of particles¶
The center of mass (com) of a system of particles is a unique point at any given time where the sum of weighted relative positions of the distributed mass is zero.
Links:
- center_of_mass¶
Vector of the system’s center of mass (COM).
- Symbol:
r_com
- Latex:
\({\vec r}_\text{COM}\)
- Dimension:
length
- position_vector¶
Position vector of the \(i\)-th body. See
distance_to_origin
.
- Symbol:
r[i]
- Latex:
\({{\vec r}}_{i}\)
- Dimension:
length
- Symbol:
m[i]
- Latex:
\({m}_{i}\)
- Dimension:
mass
- law¶
r_com = Sum(m[i] * r[i], i) * Sum(m[i], i)^(-1)
- Latex:
- \[{\vec r}_\text{COM} = \frac{\sum_i m_i {\vec r}_i}{\sum_i m_i}\]