General heat equation in 3D =========================== Heat equation governs heat diffusion, as well as other diffusive processes. It describes the evolution of heat transferred from hotter to colder environments in time and space. **Conditions:** #. The medium is isotropic. #. There is no mass transfer or radiation in the system. **Links:** #. `Wikipedia — Heat equation `__. .. py:currentmodule:: symplyphysics.laws.thermodynamics.heat_transfer.general_equation_in_3d .. py:data:: medium_density :attr:`~symplyphysics.symbols.basic.density` of the medium. Symbol: :code:`rho` Latex: :math:`\rho` Dimension: :code:`mass/volume` .. py:data:: medium_specific_isobaric_heat_capacity :attr:`~symplyphysics.symbols.basic.mass`-specific isobaric :attr:`~symplyphysics.symbols.thermodynamics.heat_capacity` of the medium. Symbol: :code:`c_p` Latex: :math:`c_{p}` Dimension: :code:`energy/(mass*temperature)` .. py:data:: position_vector Position vector. See :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`r` Latex: :math:`{\vec r}` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` as a function of :attr:`~position_vector` and :attr:`~time`. Symbol: :code:`T(r, t)` Latex: :math:`T{\left({\vec r},t \right)}` Dimension: :code:`temperature` .. py:data:: thermal_conductivity :attr:`~symplyphysics.symbols.thermodynamics.thermal_conductivity` as a function of :attr:`~position_vector`. Symbol: :code:`k(r)` Latex: :math:`k{\left({\vec r} \right)}` Dimension: :code:`power/(length*temperature)` .. py:data:: heat_source_density Volumetric density of heat sources (i.e. :attr:`~symplyphysics.symbols.basic.power` produced per unit :attr:`~symplyphysics.symbols.classical_mechanics.volume`) as a function of :attr:`~position_vector`. Symbol: :code:`q(r)` Latex: :math:`q{\left({\vec r} \right)}` Dimension: :code:`power/volume` .. py:data:: law :code:`rho * c_p * Derivative(T(r, t), t) = div(k(r) * grad(T(r, t))) + q(r)` Latex: .. math:: \rho c_{p} \frac{\partial}{\partial t} T{\left({\vec r},t \right)} = \text{div} \, k{\left({\vec r} \right)} \text{grad} \, T{\left({\vec r},t \right)} + q{\left({\vec r} \right)}