Rotational inertia in terms of a cylindrical integral ===================================================== In case of a rigid body with a continuously distributed mass, its rotational inertia is expressed as a volume integral over the entire body, i.e. a triple integral over space coordinates. **Notes:** #. The integration is carried out over the entire body as to include every volume element. **Conditions:** #. The :math:`z`-axis is the rotational axis of the body. **Links:** #. `Wikipedia, derivable from fourth equation `__. .. py:currentmodule:: symplyphysics.laws.kinematics.rotational_inertia.rotational_inertia_cylindrical_integral .. py:data:: rotational_inertia :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia` of the body. Symbol: :code:`I` Latex: :math:`I` Dimension: :code:`length**2*mass` .. py:data:: radius :attr:`~symplyphysics.symbols.classical_mechanics.radius`, or distance to the rotational axis. Symbol: :code:`r` Latex: :math:`r` Dimension: :code:`length` .. py:data:: radius_start Initial :attr:`~symplyphysics.symbols.classical_mechanics.radius`. Symbol: :code:`r_0` Latex: :math:`r_{0}` Dimension: :code:`length` .. py:data:: radius_end Final :attr:`~symplyphysics.symbols.classical_mechanics.radius`. Symbol: :code:`r_1` Latex: :math:`r_{1}` Dimension: :code:`length` .. py:data:: polar_angle Polar :attr:`~symplyphysics.symbols.basic.angle`. Symbol: :code:`phi` Latex: :math:`\varphi` Dimension: :code:`angle` .. py:data:: polar_angle_start Initial polar :attr:`~symplyphysics.symbols.basic.angle`. Symbol: :code:`phi_0` Latex: :math:`\varphi_{0}` Dimension: :code:`angle` .. py:data:: polar_angle_end Final polar :attr:`~symplyphysics.symbols.basic.angle`. Symbol: :code:`phi_1` Latex: :math:`\varphi_{1}` Dimension: :code:`angle` .. py:data:: height :attr:`~symplyphysics.symbols.classical_mechanics.height`. Symbol: :code:`h` Latex: :math:`h` Dimension: :code:`length` .. py:data:: height_start Initial :attr:`~symplyphysics.symbols.classical_mechanics.height`. Symbol: :code:`h_0` Latex: :math:`h_{0}` Dimension: :code:`length` .. py:data:: height_end Final :attr:`~symplyphysics.symbols.classical_mechanics.height`. Symbol: :code:`h_1` Latex: :math:`h_{1}` Dimension: :code:`length` .. py:data:: density :attr:`~symplyphysics.symbols.basic.density` as a function of :attr:`~radius`, :attr:`~polar_angle`, and :attr:`~height`. Symbol: :code:`rho(r, phi, h)` Latex: :math:`\rho{\left(r,\varphi,h \right)}` Dimension: :code:`mass/volume` .. py:data:: law :code:`I = Integral(rho(r, phi, h) * r^3, (r, r_0, r_1), (phi, phi_0, phi_1), (h, h_0, h_1))` Latex: .. math:: I = \int\limits_{h_{0}}^{h_{1}}\int\limits_{\varphi_{0}}^{\varphi_{1}}\int\limits_{r_{0}}^{r_{1}} \rho{\left(r,\varphi,h \right)} r^{3}\, dr\, d\varphi\, dh