Rotational inertia in terms of Cartesian integral ================================================= In case of a rigid body with a continuously distributed mass, its rotational inertia is expressed as a volume integral over the entire body, i.e. a triple integral over :math:`x, y, z` in Cartesian coordinates. **Notes:** #. The integration is carried out over the entire body as to include every volume element. **Links:** #. `Wikipedia, derivable from fourth equation `__. .. py:currentmodule:: symplyphysics.laws.kinematics.rotational_inertia.rotational_inertia_cartesian_integral .. py:data:: rotational_inertia :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia`. Symbol: :code:`I` Latex: :math:`I` Dimension: :code:`length**2*mass` .. py:data:: x :attr:`~symplyphysics.symbols.classical_mechanics.position` on the :math:`x` axis. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: x_start Initial position on the :math:`x` axis. Symbol: :code:`x_0` Latex: :math:`x_{0}` Dimension: :code:`length` .. py:data:: x_end Final position on the :math:`x` axis. Symbol: :code:`x_1` Latex: :math:`x_{1}` Dimension: :code:`length` .. py:data:: y :attr:`~symplyphysics.symbols.classical_mechanics.position` on the :math:`y` axis. Symbol: :code:`y` Latex: :math:`y` Dimension: :code:`length` .. py:data:: y_start Initial position on the :math:`y` axis. Symbol: :code:`y_0` Latex: :math:`y_{0}` Dimension: :code:`length` .. py:data:: y_end Final position on the :math:`y` axis. Symbol: :code:`y_1` Latex: :math:`y_{1}` Dimension: :code:`length` .. py:data:: z :attr:`~symplyphysics.symbols.classical_mechanics.position` on the :math:`z` axis. Symbol: :code:`z` Latex: :math:`z` Dimension: :code:`length` .. py:data:: z_start Initial position on the :math:`z` axis. Symbol: :code:`z_0` Latex: :math:`z_{0}` Dimension: :code:`length` .. py:data:: z_end Final position on the :math:`z` axis. Symbol: :code:`z_1` Latex: :math:`z_{1}` Dimension: :code:`length` .. py:data:: density Mass-specific :attr:`~symplyphysics.symbols.basic.density` as a function of :attr:`~x`, :attr:`~y`, :attr:`~z`. Symbol: :code:`rho(x, y, z)` Latex: :math:`\rho{\left(x,y,z \right)}` Dimension: :code:`mass/volume` .. py:data:: distance_to_axis :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_axis` as a function of :attr:`~x`, :attr:`~y`, :attr:`~z`. Symbol: :code:`r(x, y, z)` Latex: :math:`r{\left(x,y,z \right)}` Dimension: :code:`length` .. py:data:: law :code:`I = Integral(rho(x, y, z) * r(x, y, z)^2, (x, x_0, x_1), (y, y_0, y_1), (z, z_0, z_1))` Latex: .. math:: I = \int\limits_{z_{0}}^{z_{1}}\int\limits_{y_{0}}^{y_{1}}\int\limits_{x_{0}}^{x_{1}} \rho{\left(x,y,z \right)} r^{2}{\left(x,y,z \right)}\, dx\, dy\, dz