Force from acceleration and velocity ==================================== In special relativity, the Newton's second law does not hold in the classical form :math:`\vec F = m \vec a`, but force can still be expressed via acceleration and velocity. **Conditions:** #. This law applies to special relativity. **Links:** #. `Wikipedia, see paragraph `__. .. TODO: rename file .. py:currentmodule:: symplyphysics.laws.relativistic.vector.force_acceleration_relation .. py:data:: force Vector of the :attr:`~symplyphysics.symbols.classical_mechanics.force` exerted on the body. Symbol: :code:`F` Latex: :math:`{\vec F}` Dimension: :code:`force` .. py:data:: rest_mass :attr:`~symplyphysics.symbols.relativistic_mechanics.rest_mass` of the body. Symbol: :code:`m_0` Latex: :math:`m_{0}` Dimension: :code:`mass` .. py:data:: tangential_acceleration Vector of the body's :attr:`~symplyphysics.symbols.classical_mechanics.acceleration` tangential to the :attr:`~velocity` vector. Symbol: :code:`a_t` Latex: :math:`{\vec a}_\text{t}` Dimension: :code:`acceleration` .. py:data:: normal_acceleration Vector of the body's :attr:`~symplyphysics.symbols.classical_mechanics.acceleration` normal to the :attr:`~velocity` vector. Symbol: :code:`a_n` Latex: :math:`{\vec a}_\text{n}` Dimension: :code:`acceleration` .. py:data:: velocity Vector of the body's velocity. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`v` Latex: :math:`{\vec v}` Dimension: :code:`velocity` .. py:data:: lorentz_factor :attr:`~symplyphysics.symbols.relativistic_mechanics.lorentz_factor`. Symbol: :code:`gamma` Latex: :math:`\gamma` Dimension: :code:`dimensionless` .. py:data:: law :code:`F = gamma^3 * m_0 * a_t + gamma * m_0 * a_n` Latex: .. math:: {\vec F} = \gamma^{3} m_{0} {\vec a}_\text{t} + \gamma m_{0} {\vec a}_\text{n}