Acceleration from force and velocity ==================================== In special relativity, the Newton's second law does not hold in the classical form :math:`\vec F = m \vec a`, but acceleration can still be expressed via force and velocity. **Notation:** #. :math:`c` (:code:`c`) is :attr:`~symplyphysics.quantities.speed_of_light`. **Conditions:** #. This law applies to special relativity. **Links:** #. `Wikipedia, see paragraph `__. .. py:currentmodule:: symplyphysics.laws.relativistic.vector.acceleration_from_force_and_velocity .. py:data:: acceleration Vector of the body's :attr:`~symplyphysics.symbols.classical_mechanics.acceleration`. Symbol: :code:`a` Latex: :math:`{\vec a}` Dimension: :code:`acceleration` .. py:data:: rest_mass :attr:`~symplyphysics.symbols.relativistic_mechanics.rest_mass` of the body. Symbol: :code:`m_0` Latex: :math:`m_{0}` Dimension: :code:`mass` .. py:data:: force Vector of the :attr:`~symplyphysics.symbols.classical_mechanics.force` exerted on the body. Symbol: :code:`F` Latex: :math:`{\vec F}` Dimension: :code:`force` .. py:data:: velocity Vector of the body's velocity. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`v` Latex: :math:`{\vec v}` Dimension: :code:`velocity` .. py:data:: lorentz_factor :attr:`~symplyphysics.symbols.relativistic_mechanics.lorentz_factor`. Symbol: :code:`gamma` Latex: :math:`\gamma` Dimension: :code:`dimensionless` .. py:data:: law :code:`a = (F - dot(F, v) / c^2 * v) / (m_0 * gamma)` Latex: .. math:: {\vec a} = \frac{{\vec F} - \frac{\left( {\vec F}, {\vec v} \right)}{c^{2}} {\vec v}}{m_{0} \gamma}