Relativistic mass moment ======================== Mass moment is an additive physical quantity useful for deriving the Lorentz transformation of angular momentum. For isolated systems, it is conserved in time, but unlike angular momentum, the vector of mass moment is a polar ("ordinary") vector and therefore invariant under inversion. **Links:** #. `Wikipedia, end of paragraph `__. .. py:currentmodule:: symplyphysics.laws.relativistic.vector.relativistic_mass_moment .. py:data:: mass_moment Vector of mass moment. Symbol: :code:`N` Latex: :math:`{\vec N}` Dimension: :code:`length*mass` .. py:data:: rest_mass :attr:`~symplyphysics.symbols.relativistic_mechanics.rest_mass` of the body. Symbol: :code:`m_0` Latex: :math:`m_{0}` Dimension: :code:`mass` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: lorentz_factor :attr:`~symplyphysics.symbols.relativistic_mechanics.lorentz_factor`. Symbol: :code:`gamma` Latex: :math:`\gamma` Dimension: :code:`dimensionless` .. py:data:: position_vector Vector of the body's position. See :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`r` Latex: :math:`{\vec r}` Dimension: :code:`length` .. py:data:: velocity Vector of the body's velocity. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`v` Latex: :math:`{\vec v}` Dimension: :code:`velocity` .. py:data:: law :code:`N = m_0 * gamma^2 * (r - v * t)` Latex: .. math:: {\vec N} = m_{0} \gamma^{2} \left({\vec r} - {\vec v} t\right)