Attenuation coefficient in dielectric substate of microstrip line ================================================================= The attenuation coefficient of the microstrip metal can be calculated from the effective and relative permittivity of the microstrip, the wavelength of the signal in vacuum and the dielectric loss angle of the substrate. .. TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.transmission_lines.microstrip_lines.attenuation_coefficient_in_dielectric_substrate_of_microstrip_line .. py:data:: attenuation_coefficient :attr:`~symplyphysics.symbols.electrodynamics.attenuation_coefficient` of the microstrip line. Symbol: :code:`alpha` Latex: :math:`\alpha` Dimension: :code:`1/length` .. py:data:: relative_permittivity :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the dielectric substrate of the microstrip line. Symbol: :code:`epsilon_r` Latex: :math:`\varepsilon_\text{r}` Dimension: :code:`dimensionless` .. py:data:: effective_permittivity Effective :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the microstrip line. See :ref:`Effective permittivity of microstrip line `. Symbol: :code:`epsilon_eff` Latex: :math:`\varepsilon_\text{eff}` Dimension: :code:`dimensionless` .. py:data:: wavelength :attr:`~symplyphysics.symbols.classical_mechanics.wavelength` in vacuum. Symbol: :code:`lambda` Latex: :math:`\lambda` Dimension: :code:`length` .. py:data:: loss_tangent :attr:`~symplyphysics.symbols.electrodynamics.dielectric_loss_tangent`. Symbol: :code:`tan(delta)` Latex: :math:`\tan \delta` Dimension: :code:`dimensionless` .. py:data:: law :code:`alpha = 27.3 * epsilon_r / sqrt(epsilon_eff) * (epsilon_eff - 1) / (epsilon_r - 1) * tan(delta) / lambda` Latex: .. math:: \alpha = 27.3 \frac{\varepsilon_\text{r}}{\sqrt{\varepsilon_\text{eff}}} \frac{\varepsilon_\text{eff} - 1}{\varepsilon_\text{r} - 1} \frac{\tan \delta}{\lambda}