Wave impedance of coplanar line when length to distance ratio squared is between :math:`\frac{1}{2}` and :math:`1` ================================================================================================================== Under the conditions described below, the wave impedance of a coplanar line depends on its effective permittivity and physical dimensions. **Conditions:** #. :math:`h < \frac{d}{4}` #. :math:`\frac{1}{2} < \left( \frac{l}{d} \right)^2 \le 1` Here, :math:`h` is the thickness of the substrate, and :math:`d` is the distance between the first and last electrodes. .. TODO: check if it is *wave impedance* or *surge (characteristic) impedance* TODO: rename file to feature wave *impedance* TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.transmission_lines.coplanar_lines.wave_resistance_of_coplanar_line_second .. py:data:: wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the coplanar line. Symbol: :code:`eta` Latex: :math:`\eta` Dimension: :code:`impedance` .. py:data:: effective_permittivity Effective :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the coplanar line. See :ref:`Effective permittivity of coplanar line `. Symbol: :code:`epsilon_eff` Latex: :math:`\varepsilon_\text{eff}` Dimension: :code:`dimensionless` .. py:data:: electrode_distance :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance` between the first and last electrodes. Symbol: :code:`d` Latex: :math:`d` Dimension: :code:`length` .. py:data:: central_electrode_width Width (see :attr:`~symplyphysics.symbols.classical_mechanics.length`) of the central electrode of the coplanar line. Symbol: :code:`l` Latex: :math:`l` Dimension: :code:`length` .. py:data:: resistance_constant Constant equal to :math:`30 \pi^2 \, \Omega` (:code:`30 * pi^2 Ohm`). Symbol: :code:`R_0` Latex: :math:`R_0` Dimension: :code:`impedance` .. py:data:: law :code:`eta = R_0 / sqrt(epsilon_eff) / log(2 * (1 + sqrt(l / d)) / (1 - sqrt(l / d)))` Latex: .. math:: \eta = \frac{R_0}{\sqrt{\varepsilon_\text{eff}}} \frac{1}{\log \left( \frac{2 \left(1 + \sqrt{\frac{l}{d}}\right)}{1 - \sqrt{\frac{l}{d}}} \right)}