Internal energy is first order homogeneous function

Internal energy is a first-order homogeneous function of its internal variables (entropy, volume, and particle count).

Links:

  1. Wikipedia, first equation.

entropy

entropy.

Symbol:

S

Latex:

\(S\)

Dimension:

energy/temperature

volume

volume

Symbol:

V

Latex:

\(V\)

Dimension:

volume

particle_count

particle_count.

Symbol:

N

Latex:

\(N\)

Dimension:

dimensionless

internal_energy

internal_energy as a function of entropy, volume, and particle_count.

Symbol:

U(S, V, N)

Latex:

\(U{\left(S,V,N \right)}\)

Dimension:

energy

factor

Dimensionless real-valued factor.

Symbol:

k

Latex:

\(k\)

Dimension:

dimensionless

homogeneity_condition

U(k * S, k * V, k * N) = k * U(S, V, N)

Latex:
\[U{\left(k S,k V,k N \right)} = k U{\left(S,V,N \right)}\]